???jsp.display-item.social.title??? |
|
Please use this identifier to cite or link to this item:
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8538
Tipo do documento: | Dissertação |
Título: | Quantum enhancements for machine learning based on a probabilistic quantum memory |
Autor: | SANTOS, Priscila Gabriele Marques dos |
Primeiro orientador: | SILVA, Adenilton José da |
Primeiro membro da banca: | FERREIRA, Tiago Alessandro Espinola |
Segundo membro da banca: | PAULA NETO, Fernando Maciano de |
Resumo: | A aprendizagem de máquina quântica surge a partir da interação das áreas de aprendizagem de máquina e computação quântica. Aprendizagem de máquina é um ramo da inteligência artificial de impacto em diversas áreas que provê aos computadores a habilidade de aprender de maneira autônoma a partir de experiências. A computação quântica, por outro lado, é um diferente paradigma computacional. O processamento de informação e comunicação em um computador quântico faz uso de princípios e propriedades da mecânica quântica, obtendo efeitos computacionais que não podem ser realizados eficientemente em computadores clássicos. A computação quântica levanta novas possibilidades a partir de abordagens promissoras que fazem uso desses efeitos. De fato, propostas de algoritmos quânticos demonstram seu potencial em superar a eficiência dos algoritmos clássicos em algumas tarefas. O presente trabalho busca contribuir com o campo de aprendizagem de máquina quântica. Para tanto, foi investigado o uso e as aplicações de uma memória probabilística quântica como ferramenta para propor algoritmos de aprendizagem de máquina melhorados. Aqui, a memória quântica foi utilizada para desenvolver procedimentos melhorados para as tarefas de validação cruzada, seleção e avaliação de arquiteturas de redes neurais artificiais. Além disso, um modelo de rede neural sem peso que utiliza a memória quântica foi avaliado e melhorado. |
Abstract: | Quantum machine learning arises from the interaction of fields of machine learning and quantum computing. Machine learning is a branch of artificial intelligence relevant in many areas. It provides computers the ability to learn autonomously from experience. Quantum computing, on the other hand, is a different computational paradigm. The processing of information and communication in a quantum computer makes use of the principles and properties of quantum mechanics. With this, it is possible to achieve computational effects that cannot be efficiently reached classically. Quantum computing raises new possibilities through promising approaches that make use of these effects. In fact, proposed quantum algorithms demonstrate their potential in outperforming classical algorithms in some tasks. The present work aims to contribute with the field of quantum machine learning. In order to do so, the use and applications of a quantum probabilistic memory as a tool to propose improved machine learning algorithms is investigated. Here, the quantum memory is used to develop improved procedures for tasks such as cross-validation, and the selection and evaluation of artificial neural network architectures. In addition, a weightless neural network model using the probabilistic quantum memory was evaluated and improved. |
Palavras-chave: | Computação quântica Memória quântica Aprendizagem de máquina |
Área(s) do CNPq: | CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Idioma: | por |
País: | Brasil |
Instituição: | Universidade Federal Rural de Pernambuco |
Sigla da instituição: | UFRPE |
Departamento: | Departamento de Estatística e Informática |
Programa: | Programa de Pós-Graduação em Informática Aplicada |
Citação: | SANTOS, Priscila Gabriele Marques dos. Quantum enhancements for machine learning based on a probabilistic quantum memory. 2019. 55 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
Tipo de acesso: | Acesso Aberto |
URI: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8538 |
Data de defesa: | 28-Feb-2019 |
Appears in Collections: | Mestrado em Informática Aplicada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Priscila Gabriele Marques dos Santos.pdf | Documento principal | 673,92 kB | Adobe PDF | Download/Open Preview |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.