???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5238
Full metadata record
DC FieldValueLanguage
dc.creatorBARROS, Patrícia Silva Nascimento-
dc.creator.Latteshttp://lattes.cnpq.br/8157392704703268por
dc.contributor.advisor1OLIVEIRA JUNIOR, Wilson Rosa de-
dc.contributor.referee1STOSIC, Tatijana-
dc.contributor.referee2STOSIC, Borko-
dc.contributor.referee3FRANÇA, Felipe Maia Galvão-
dc.date.accessioned2016-08-09T14:23:02Z-
dc.date.issued2011-02-21-
dc.identifier.citationBARROS, Patrícia Silva Nascimento. Reconhecimento quântico de padrões aplicados à sequências de DNA. 2011. 78 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.por
dc.identifier.urihttp://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5238-
dc.description.resumoA computação quântica é uma área de pesquisa recente que engloba três áreas conhecidas: matemática, física e computação. Com as pesquisas na área de algoritmos quânticos veio a necessidade de entender e expressar tais algoritmos do ponto de vista de programação. Diversas linguagens e modelos para programação quântica de alto nível têm sido propostas nos últimos anos. A Mecânica Quântica (MQ) é um conjunto de regras matemáticas que servem para a construção de teorias físicas, desde a sua criação até os dias de hoje ela tem sido aplicada em diversos ramos. Neste contexto se desenvolveu a Computação Quântica, talvez a mais espetacular proposta de aplicação prática da MQ. A dificuldade de se desenvolver algoritmos quânticos propicia o uso de técnicas alternativas à solução de problemas puramente algorítmica, como por exemplo o aprendizado de máquinas e algoritmos genéticos. Carlo Trugenberger propõe um modelo de memória quântica associativa onde os padrões binários de n bits são armazenados em superposição com um subconjunto apropriado da base computacional de n qubits. Este modelo resolve o problema de escassez de capacidade bem conhecida da memória clássica associativa,provendo uma melhoria grande em capacidade. A distribuição proposta por Trugenberger usa a distância de Hamming, em que as amplitudes tem um pico nos padrões armazenados, que tem menor distância em relação à entrada. A precisão do reconhecimento de padrões pode ser ajustado por um parâmetro b, isto é, aumentando b aumenta a probabilidade de reconhecimento. Este trabalho analisa a diversidade genética das abelhas sem ferrão Melipona quinquefasciata, obtidas de várias colônias silvestres, em localidades distintas da Chapada do Araripe-CE, Chapada da Ibiapaba-CE, cidade do Canto do Buriti-PI e Luziânia-GO. As sequências de DNA foram transformados substituindo A por 00, G por 01, C por 10 e T por 11. Os resultados mostram que essa probabilidade é muito eficiente para reconhecer os padrões de sequências de DNA das abelhas sem ferrão Melipona quinquefasciata das regiões 18S e ITS1 parcial. O algoritmo não é computacionalmente eficiente em um computador clássico, mas será extremamente eficiente em um computador quântico. Concluiu-se que este método de reconhecimento quântico de padrões é melhor que o método clássico utilizado por Pereira.por
dc.description.abstractQuantum computing is a recent area of research that encompasses three known areas: mathematics, physics and computing. With the research in quantum algorithms came the need to understand and express such algorithms in terms of programming. Several languages and programming models for high-level quantum have been proposed in recent years. Quantum mechanics (QM) is a set of mathematical rules that serve for the construction of physical theories, from its inception until the present day it has been applied in various branches. In this context we developed the Quantum Computation, perhaps the most spectacular proposal for practical implementation of QM. The difficulty in developing quantum algorithms provides the use of alternative techniques to the solution of purely algorithmic problems, such as machine learning and genetic algorithms. Carlo Trugenberger proposes a model of quantum associative memory which binary patterns of n bits are stored in a quantum superposition of an appropriate subset of the computational basis of n qubits. This model solves the problem of insufficient capacity of the well known classical associative memory, providing a large improvement in capacity. The distribution proposed by Trugenberger uses the Hamming distance, where the amplitudes have a peak in the stored patterns, which has smaller distance from the entrance. The accuracy of pattern recognition can be adjusted by the parameter b, in other words increasing b increases the probability of recognition. This study examines the genetic diversity of stingless bees Melipona quinquefasciata, obtained from several wild colonies in different localities of the Chapada do Araripe-CE, Chapada da Ibiapaba-CE, city’s Canto do Buriti-PI and Luziânia-GO. DNA sequences were processed by replacing A by 00, G by 01, C by 10 and T by 11. The results show that this probability is very efficient to recognize the patterns of DNA sequences of the stingless bees Melipona quinquefasciata regions 18S and ITS1 partial. The algorithm is not computationally efficient on a classical computer, but is extremely efficient on a quantum computer. It was concluded that this method of recognition of quantum standards is better than the classic method used by Pereira.por
dc.description.provenanceSubmitted by (ana.araujo@ufrpe.br) on 2016-08-09T14:23:02Z No. of bitstreams: 1 Patricia Silva Nascimento.pdf: 1820001 bytes, checksum: f1196e1a5ad73d884c17e09610faf980 (MD5)eng
dc.description.provenanceMade available in DSpace on 2016-08-09T14:23:02Z (GMT). No. of bitstreams: 1 Patricia Silva Nascimento.pdf: 1820001 bytes, checksum: f1196e1a5ad73d884c17e09610faf980 (MD5) Previous issue date: 2011-02-21eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural de Pernambucopor
dc.publisher.departmentDepartamento de Estatística e Informáticapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRPEpor
dc.publisher.programPrograma de Pós-Graduação em Biometria e Estatística Aplicadapor
dc.rightsAcesso Abertopor
dc.subjectComputação quânticapor
dc.subjectReconhecimento quântico de padrõespor
dc.subjectSequências de DNApor
dc.subjectAbelha sem ferrãopor
dc.subjectMelipona quinquefasciatapor
dc.subjectQuantum computationeng
dc.subjectQuantum pattern recognitioneng
dc.subjectDNA sequenceseng
dc.subjectSingless beeseng
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICApor
dc.titleReconhecimento quântico de padrões aplicados à sequências de DNApor
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Biometria e Estatística Aplicada

Files in This Item:
File Description SizeFormat 
Patricia Silva Nascimento.pdfDocumento principal1,78 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.