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ABSTRACT 

Modern baselines that make up the paradigm of sustainable development of aquaculture 

highlight microalgae as promising organisms for the suitable fish production growth. 

Microalgae biomass offers opportunities of processes and products not only for aquaculture 

sector, but also for human nutrition, wastewater treatment, bioenergy, biosensors, and new 

drugs development. For this latter application, marine dinoflagellates have emerged 

considerably in recent years due to the chemodiversity of secondary metabolites produced by 

them. However, a number of challenges are related to dinoflagellate cultivation, for example: 

sensitivity to shear stresses, nutritional complexity, sensitivity to thermal fluctuations, non-

growth under sub-optimal conditions, etc. In view of this, the present thesis was built aimed at 

contributing to the improvement of marine dinoflagellates cultivation, in particular, for the 

endosymbiotic dinoflagellate Durusdinium glynnii. This thesis is organized into two main 

sections, the first one consisting of three review articles, and the second organized over three of 

research articles. 

In the first article, global dinoflagellate research output was analyzed based on a scientometric 

approach using the Scopus database published between 1970 and 2020. The historical data 

proven that dinoflagellate research is an active research area, highlighting the themes of 

"harmful algal blooms" and "symbiosis with coral reefs". In analyzing data from the last decade 

of research, it was possible to identify a potential interest in cultivation and biotechnology of 

dinoflagellate. In the second article, some of the main genera of dinoflagellates (i.e., 

Alexandrium, Amphidinium, Gymnodinium, Karlodinium, and dinoflagellates of the family 

Symbiodiniaceae) with potential for cultivation were presented and reviewed. This article 

applications of dinoflagellates in aquaculture were also pointed out. Finally, in the third article, 

the potential of microalgae to achieve the important Sustainable Development Goals proposed 

by the United Nations was reviewed. In this article, the main challenges and the sustainable 

techniques used in the upstream and downstream processing of the microalgae production chain 

were presented.  

In the fourth article an investigation of the effects of irradiance on growth and biochemical 

composition of D. glynnii was conducted. Under optimal growth conditions, D. glynnii 

accumulated high levels of docosahexaenoic acid (DHA), while the accumulation of the 

carotenoid peridinin occurred when exposed to high irradiance – proving a photoprotective role 

of this carotenoid. Additionally, extracts of D. glynnii biomass showed potential scavenging 

free radicals by means of antioxidant activity assays. In the fifth article, nutritional strategies, 
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based on nitrogen source and concentration, were evaluated as a way to alleviate thermal and 

light stress – two important parameters for productive scale-up of dinoflagellates. For light 

stress, the use of sodium nitrate as a nitrogen source was more suitable, while for thermal 

stress, only urea in high concentrations was able to allow D. glynnii cell division. Furthermore, 

some ecological implications of the findings of this study were demonstrated towards 

contribute to the knowledge of the phenomena related with the resistance of certain coral reefs 

to temperature rise. Finally, in the last article, a holistic approach for the production of 

antibacterial compounds using wastewater from shrimp production was proven. D. glynnii 

showed better growth performance using aquaculture wastewater than using a traditional 

culture medium, and the biomass produced in the wastewater was able to inhibit two Vibrio 

strains. These findings contribute to the development of circularity in aquaculture. 

In conclusion, dinoflagellate research is associated with several important issues for society in 

terms of social, economic, and public health issues. Recent advances in cultivation and 

biotechnology of dinoflagellates can help to understand the occurrence of harmful blooms in 

natural environments, as well as in the development of new sustainable products and processes. 

Keywords: antibiotics, antioxidants, docosahexaenoic acid, peridinin, zooxanthellae. 
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RESUMO 

As linhas de base modernas, que compõem o paradigma do desenvolvimento sustentável, da 

aquicultura destacam as microalgas como organismos promissores para o crescimento 

adequado da produção de peixes e de camarões. A biomassa de microalgas oferece 

oportunidades de processos e de produtos não apenas para o setor aquícola, mas também para a 

nutrição humana, o tratamento de efluentes, a geração de bioenergias, a produção de 

biossensores e para o desenvolvimento de novos medicamentos. Para esta última aplicação, 

o interesse por dinoflagelados marinhos emergiu consideravelmente nos últimos 

anos devido à quimiodiversidade de metabólitos secundários produzidos por estes. No 

entanto, vários desafios estão relacionados ao cultivo de dinoflagelados, como por exemplo: 

sensibilidade a tensões de cisalhamento, complexidade nutricional, sensibilidade a flutuações 

térmicas, não crescimento em condições subótimas, etc. Diante disso, a presente tese foi 

construída com o objetivo de contribuir para o aprimoramento do cultivo de dinoflagelados 

marinhos, em especial, para o dinoflagelado endossimbionte Durusdinium glynnii. Esta tese 

está organizada em duas seções principais, sendo a primeira composta por três artigos de 

revisão, e a segunda composta por três artigos experimentais. 

No primeiro artigo, a produção científica global de dinoflagelados foi analisada com base em 

uma abordagem cientométrica usando o banco de dados da plataforma Scopus no período entre 

1970 e 2020. Os dados históricos comprovaram que a pesquisa com dinoflagelados é uma área 

de pesquisa ativa, destacando–se os temas "floração de algas nocivas" e " simbiose com recifes 

de coral". Ao analisar os dados da última década de pesquisa, foi possível identificar um 

potencial interesse no cultivo e biotecnologia de dinoflagelados. No segundo artigo, alguns dos 

principais dinoflagelados (i.e., Alexandrium, Amphidinium, Gymnodinium, Karlodinium e 

dinoflagelados da família Symbiodiniaceae) com potencial para cultivo foram apresentados e 

revisados. Neste artigo também foram apontadas aplicações da biomassa de dinoflagelados na 

aquicultura. Por fim, no terceiro artigo, foi revisado o potencial das microalgas para alcançar os 

importantes Objetivos de Desenvolvimento Sustentável propostos pelas Nações Unidas. Neste 

artigo, foram apresentados os principais desafios e as técnicas sustentáveis utilizadas no 

processamento upstream e downstream da cadeia produtiva de microalgas. 

No quarto artigo foi realizada uma investigação dos efeitos da irradiância no crescimento e na 

composição bioquímica de D. glynnii. Em condições ótimas de crescimento D. glynnii 

acumulou altos níveis de ácido docosaexaenoico, enquanto o acúmulo do carotenoide 

peridinina ocorreu quando exposto a alta irradiância – comprovando um papel fotoprotetor 

9 
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desse carotenoide. Adicionalmente, extratos de biomassa de D. glynnii mostraram potencial no 

sequestro de radicais livres por meio de ensaios de atividade antioxidante. No quinto artigo, 

foram avaliadas estratégias nutricionais, baseadas na fonte e na concentração de nitrogênio, 

como forma de aliviar o estresse térmico e luminoso – dois parâmetros importantes para o 

escalonamento produtivo de dinoflagelados. Para o estresse luminoso, o uso de nitrato de sódio 

como fonte de nitrogênio foi mais adequado, enquanto para estresse térmico, apenas a ureia em 

altas concentrações foi capaz de permitir a divisão celular de D. glynnii. Além disso, algumas 

implicações ecológicas dos achados deste estudo foram demonstradas no sentido de contribuir 

para o conhecimento dos fenômenos relacionados com a resistência de certos recifes de coral 

ao aumento da temperatura. Por fim, no último artigo, foi comprovada uma abordagem 

holística para a produção de compostos antibacterianos utilizando águas residuais da produção 

de camarão. D. glynnii apresentou melhor desempenho de crescimento usando águas residuais 

da aquicultura em comparação ao meio de cultura tradicional, e a biomassa produzida nas 

águas residuais foi capaz de inibir o crescimento de duas cepas bacterianas de Vibrio. Essas 

descobertas contribuem para o desenvolvimento da circularidade na aquicultura. 

Em suma, a pesquisa de dinoflagelados está associada a várias questões importantes para a 

sociedade em aspectos sociais, econômicos e de saúde pública. Avanços recentes no cultivo e 

na biotecnologia de dinoflagelados podem auxiliar no entendimento da ocorrência de florações 

nocivas em ambientes naturais, bem como no desenvolvimento de novos produtos bioativos e 

processos sustentáveis. 

Palavras-chave: ácido docosaexaenoico, antibióticos, antioxidantes, peridinina, zooxantelas. 
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1. Thesis presentation

Dinoflagellates are perhaps the most diverse and complex group of microalgae in terms 

of phylogeny, morphology, and nutrition. Dinoflagellates are popularly known for causing 

phenomena of red tides (in colloquial language) or harmful algal blooms (in the scientific 

literature). In addition, they are also recognized for their fundamental role in the functioning of 

coral reefs. In both cases, dinoflagellates can produce a wide range of secondary metabolites, 

including hormones, toxins, and super–carbon–chain compounds. These compounds have been 

arousing considerable interest in biotechnology and pharmacology communities, due to 

potential antibacterial, antifungal, antiviral, and cytotoxicity activities, in addition to having 

positive preliminary effects against Alzheimer's and in the treatment for abstinence from heroin 

drug use. On the other hand, understanding the biosynthesis of these metabolites, in laboratory 

trials using isolated strains, can help to better understand the formation mechanisms of harmful 

dinoflagellate blooms and also the defense mechanisms against stressors in coral bleaching 

events. In view of this, the present thesis was built with the aim of contributing to the studies on 

dinoflagellate biotechnology. This thesis is divided into two main sections: the first section is 

composed by review articles, and the second one composed by research articles/papers. 

Understanding the evolution of scientific dinoflagellates literature was an initial step for 

the knowledge of the state–of–art of this research field. Thus, the first article reviews global 

dinoflagellate research output based on a scientometric approach. An evaluation quantitative 

and qualitative of dinoflagellate documents from Scopus database was carried out. This review 

article was published in Publications (Percentile: 89%, Impact Factor: 3.705; v. 8, p. 50, 2020 

DOI: 10.3390/publications8040050) and it was recognized as one of the top 10 most cited 

articles published in the last two years. 

The second article reviews the main dinoflagellate genera with potential (and 

biotechnological interest) for biomass production. In addition, this review reveals key 

information on dinoflagellate cultivation and discuss on the major challenges, new insights, and 

future direction in the promising dinoflagellate production chain. This review article was 

published in Borneo Journal of Marine Science and Aquaculture (Percentile: N/A, Impact 

Factor: N/A; v. 4, p. 1-5, 2020. DOI: 10.5281/zenodo.4469212). 

Microalgae represent a promising sustainable alternative for development of several 

industries, making its utilization important to modern world. In recent years, microalgae have 

been identified as suitable organisms to the achievement of important Sustainable Development 
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Goals (SDGs) set up in 2015 by the United Nations General Assembly. More specifically, 

microalgae can support eight SDGs: 1 – no poverty, 2 – zero hunger, 3 – good health and well-

being, 6 – clean water and sanitization, 7 – affordable and clean energy, 12 – responsible 

consumption and production, 14 – life below water, and 15 – life on land. The contribution of 

microalgae biotechnology to achieving these important SDGs was discussed in the third article. 

This review article was the baseline for the sustainable practices that were employed in the 

development of the experimental trials conducted in the present thesis. This article was 

published in Journal of Environmental Management (Percentile: 95%, Impact Factor: 8.91; v. 

320, p. 115897, 2022). 

Opening section 2 of research articles, the fourth article covers an investigation of the 

effects of irradiance on growth performance, pigments and fatty acids composition, and 

antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii. In this 

manuscript, D. glynnii was cultured under different irradiances (ranging from 100 to 800 μmol 

photons m−2 s–1) provided by light emitting diode (LED) lamps. The use of LEDs lamps results 

in less energy usage and has a less environmental impact than conventional light sources. We 

used a strategy of consecutive subcultures (resulting in more than 70 days of cultivation) to fit a 

robust photoacclimation model for this dinoflagellate. Our study shows that D. glynnii can 

accumulates high levels of docosahexaenoic acid (DHA) and peridinin, an exclusive carotenoid 

presents in prototrophic dinoflagellates, under certain light conditions. Following antioxidants 

assays by different methods, it was possible to correlate the production of antioxidant 

compounds to different metabolites present in the D. glynnii biomass. In particular, this article 

contributes to the achievement of the SDGs 3, 12 and 14, and it was published in Applied 

Microbiology and Biotechnology (Percentile 87%, Impact Factor: 5.560; v. 106, p. 6263-6276, 

2022, DOI: 10.1007/s00253-022-12131-6). 

An investigation on the effects of the source (sodium nitrate and urea) and the 

concentration (1760 and 440 µM) of nitrogen on the thermal and light resistance of D. glynnii 

was carried out in the fifth article. Both stressors are crucial for the outdoor scalability of 

microalgae cultivation. The nitrogen isotopic signatures (δ13 N) were different between the 

sources, proven the effectiveness in the usage of the two nitrogen forms. High nitrogen 

concentrations (i.e., 1760 µM), regardless of source, increased D. glynnii growth and 

chlorophyll–a and peridinin levels. During the pre–stress period, the use of urea accelerated the 

growth of D. glynnii compared to cells grown using sodium nitrate. During the luminous stress, 

the high nitrate condition has increased the cell growth, but changes in pigments composition 
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was not observed. On the other hand, during thermal stress was observed by a steep and steady 

decline in cell densities over time, except for high urea condition, where there is cellular 

division and peridinin accumulation 72 h after the thermal shock. This paper will be submitted 

to Coral Reefs (Percentile 90%, Impact Factor: 4.640). 

Based on recent trends in circular bioeconomy business models, and contributing to 

SDGs 3, 6, 12, and 14, the investigation conducted in the sixth article showed the ability of D. 

glynnii to grow in wastewater from shrimp farming. As biorremediator organisms, 

dinoflagellates can bioconvert organic residual carbon, nitrogen– and phosphorus–based 

compounds, and other oligoelements (such as, heavy metals, pharmaceuticals, and other 

emerging pollutants), into several valuable metabolites. Here, we have proven that extracts 

from D. glynnii biomass cultured in an aquaculture wastewater has antioxidant and anti-Vibrio 

activities. Some Vibrio spp. cause massive mortality in shrimp farms every year, and the use of 

a raw material produced using waste from shrimp farming, can become a valuable and low–

cost approach in a holistic process with ultra–low environmental impact. These findings of this 

research will be submitted to Aquaculture (Percentile 92%, Impact Factor: 5.135). 

Additionally, another review article covering a multidisciplinary review of one of the 

most studied microalgae, in terms of number of published articles, in the world – Tetradesmus 

obliquus – was published. Some of the main research hotspot (i.e., light, nitrogen source 

and concentration, and the use of wastewater as culture medium) in this microalga research 

was selected to apply these knowledges for the experimental studies using dinoflagellates 

herein presented. This review was published in Reviews in Aquaculture (Percentile 99%, 

Impact Factor: 10.618, v. 13, p. 1594-1618.) – the leading Fisheries journal (according to 

Web of Science JCR 2022) – and recently, it was recognized as one of the top 3 most cited 

publications between 2021 and 2022 from this journal. This review article is presented in 

Appendix A. 
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2. Objectives

The main objective of this Thesis was to increase the understanding and deepen the 

knowledge on cultivation of marine dinoflagellates. To achieve this general objective, the 

following specific goals were completed: 

1. To examine trends and scientific gaps, using bibliometric tools, in worldwide

dinoflagellates research.

2. To explore the main genera of dinoflagellates with potential for the production of

biomass and biocompounds.

3. To know the main sustainable practices onto microalgal biotechnology that can be

applied to products and processes from marine dinoflagellate.

4. To analyze the research hotspots with a microalga model for conducting experiments

with marine dinoflagellates.

5. To determine the effects of irradiance on growth, the profile of pigments and fatty acids,

and the production of antioxidant compounds in the biomass of the dinoflagellate

D. glynnii.

6. To explore the effects of nitrogen source and concentration on the increase resistance to

thermal and light stressors in D. glynnii.

7. To develop a holistic quasi-zero waste model integrating wastewater treatment from

aquaculture with the production of antibacterial compounds.
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3. Chapter 1 – Review papers

3.1. Article 1: A scientometric overview of global dinoflagellate research 
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Abstract: Understanding the evolution of scientific literature is a critical and necessary step for the
development and strengthening of a research field. However, an overview of global dinoflagellate
research remains unavailable. Herein, global dinoflagellate research output was analyzed based on
a scientometric approach using the Scopus data archive. The basic characteristics and worldwide
interactions of dinoflagellate research output were analyzed to determine the temporal evolution
and new emerging trends. The results confirm that dinoflagellate research output, reflected in the
number of publications, is a fast-growing area since the mid-1990s. In total, five research subareas
emerged using a bibliometric keywords analysis: (1) “symbiosis with coral reefs”, (2) “phylogeny”,
(3) “palynology”, (4) “harmful algal blooms” and (5) “nutrition strategies”. Dinoflagellate publications
were modeled by fish production (both aquaculture and fisheries) and economic and social indexes.
Finally, directions for future research are proposed and discussed. The presented scientometric
analysis confirms that dinoflagellate research is an active and important area with focus on mitigating
economic impacts, especially in regard to fish production.

Keywords: bibliometric analysis; Dinophyceae; publications; microalgae; Scopus

1. Introduction

Dinoflagellates are protists characterized by two flagella and the pigment peridinin in
combination with chlorophyll a, b or c. A large fraction of these microorganisms is mixotrophic,
combining photosynthesis with phagotrophy and/or myzocytosis facilitating bloom formation when
nutrients are scarce in the euphotic zone of coastal waters [1]. This functional group of microalgae has
a primary marine occurrence but is also commonly found in freshwater and estuarine environments.
Dinoflagellates are a highly diverse and abundant group of microalgae species and in terms of cell size
substantially smaller than diatoms [2].

Claims by botanists, zoologists and micropaleontologists, regarding the taxonomic classification
of dinoflagellates, were recurrent until the use of molecular tools which improved the evolutionary
understanding and the complex life cycles of dinoflagellates. In fact, the literature on dinoflagellates,
especially those published in the last century, is widely diffused, complex and partly contradictory.
Nonetheless, dinoflagellates have been recognized for their essential role in the functioning of aquatic
ecosystems, especially with regard to: primary productivity [3], symbiosis with reef-building corals [4],
harmful algal blooms (HABs) [5] and toxin production and associated cascading trophic effects [6].
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Dinoflagellates have been studied in regard to their production of highly diverse secondary
metabolites. These compounds are, in general, not vital for the cell’s survival and reproduction,
and include a variety of hormones and allelochemicals. The toxins are a group of allelochemicals that
can have harmful effects on higher organisms, such as fish, birds and mammals [7]. Historical records
of toxins produced by dinoflagellates include (1) the Captain George Vancouver’s crew poisoning after
eating contaminated shellfish in 1793 [8], (2) human poisoning caused by the consumption of mussels
in 1927 (California, United States), which has been related to the presence of Alexandrium catenella [9],
and (3) the first proven cases of paralytic shellfish poisoning (PSP) in humans were recorded in 1976 [10].
Before 1970, toxic dinoflagellate blooms were recorded in Europe, North America and Japan and
as of 1990, toxic species were observed in the Southern Hemisphere in conjunction with a general
global increase in the distribution of toxins due to transportation of many HAB species via ship ballast
waters [8,11]. Since then, HABs have caused serious public health problems and negatively impacted
fishing and aquaculture industries, including the recent Godzilla Red Tide event in Chile—the largest
recorded fish farm mortalities [11–14]. Additionally, dinoflagellates may cause problems in freshwater
environments. Particularly Ceratium spp. have been reported in several freshwater environments in
South America since the mid-2000s, and, although it is not a toxic genus, the postbloom accumulation
of Ceratium spp. biomass may cause low oxygen environments due to an increased bacterial activity
impacting survival rates of fish and crustacean species [15,16].

Bibliometric or scientometric analyses have become fundamental tools for analyzing current
trends within the scientific literature and provide guidelines and motivations for future research in
specific fields or areas. Recently, bibliometric analyses have been reported on eutrophication [17],
diatom research [18], microcystins in China [19], photosynthesis [20] and microalgae research [21].
However, although these reports indirectly addressed dinoflagellate research, curiously this area
has not been specifically emphasized—with the exception of Barbosa Noga and Ferreira Gomes [22]
summarizing Brazilian dinoflagellate studies.

Exclusively quantitative bibliometric research is not necessarily the best approach to assess and
discuss global scientific productivity [23], however, when combined with qualitative data, it can
generate valuable indices for recognizing current status and future prospects within a given research
field/area. Herein, dinoflagellate research was quantitatively and qualitatively analyzed to provide an
improved understanding of the global research situation and emerging trends. The basic characteristics,
development of publications, worldwide distribution, mainstream journals, keywords and genera
of dinoflagellates research were analyzed in detail. Diverging research trends and subareas were
identified to raise awareness on possible gaps in scientific cooperation.

2. Methods

2.1. Data Collection

The information of scientific publications was based on the Elsevier Scopus database (obtained on
31 January 2020). A detailed search was carried out using [TITLE-ABS-KEY (dinoflagellate)] as search
query. This search resulted in 17,871 publications after limiting the search timescale from 1970 to 2019.
Although the term “dinoflagellates” has presented the same number of publications as “dinoflagellate”,
it should be noted that if a different term is used, such as “Dinophyceae” (10,475 publications),
variations may occur. The obtained results were processed by author keywords with identical
meanings and by discarding keywords not related to phycology such as “article”, “priority journal” and
“non-human”. Particularly the term “non-human” appears in the sixth place (2995 publications) among
the most frequent keywords, however, when analyzing in detail the publications [TITLE-ABS-KEY
(dinoflagellate) AND LIMIT-TO (EXACTKEYWORD, “Nonhuman”)], the results did not contain any
publications with the term “non-human” and, conclusively, this keyword was discarded.
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2.2. Bibliometric Analysis

The publications obtained were organized and processed using the OpenRefine software.
This software tool allows for the eliminating of duplicate records or grouping of different representations
of the same reality [21,24].

The characteristics of bibliometric analyzed literature include both qualitative information and
quantitative data. Herein, the elements investigated were: the document type and the language,
the number of publications per year, the distribution of publications by research institutions and country,
the keywords, the sources and research networks. In the case of research networks, a community can
be defined as a set of nodes that are more densely connected with each other than with the rest of
the network. Community detection was carried out using the VOSviewer software (version 1.6.14).
This software enables the creation of charts categorized by countries or keywords what is represented
by a node. The connections between two nodes represent the collaboration between the two keywords
(or countries) in a research file.

2.3. Mapping and Modeling Scientific Production

Population and territorial extension data were obtained from the Worldometer website
(http://www.worldometers.info/world-population/population-by-country/) and were used for
normalization of scientific production per inhabitants and per territorial extension. A world map was
colored according to number of publications of each country to compare the spatial distribution of
published dinoflagellate publications.

In order to verify the influence of economic, environmental and social data on scientific
production of dinoflagellates, we fitted generalized linear model (GLM), with a Gaussian error
distribution and an identity link function for continuous data. The GLM was made using the ‘lmer’
function from the package ‘lme4’ [25]. Gross Domestic Product (GDP) and Human Development
Index (HDI) were downloaded from The World Bank Database (https://data.worldbank.org/).
Environmental Sustainability Index (ESI) was downloaded from the Yale University (https://epi.
yale.edu/). This index summarizes 32 performance indicators and 11 pollutant emission categories in a
single score for environmental health and ecosystem vitality. Additionally, agricultural production
data were evaluated according to the global fish production by aquaculture (Aqua) and by capture
(Capt) and to the fertilizer consumption (Fert) downloaded from the Fisheries Division of the Food
and Agriculture Organization of the United Nations (http://www.fao.org/fishery/topic/16140) and from
The World Bank Database, respectively. Data were extracted from 1970 to 2019 (depending of data
availability) to calculate the according averages to be used in the model.

All analyses were performed in the RStudio software v 1.2.5 (Boston, MA, USA).

3. Results

3.1. Basic Characteristics of the Dinoflagellate Literature

The 17,871 publications, resulting from the initial search performed on the Elsevier Scopus platform,
were composed of 16,258 articles (91%), 619 reviews (3.46%), 480 conference papers (2.68%), 214 book
papers (1.19%) and 300 others (1.67%). Publications were published in English (17,071 � 95.52%),
Chinese (205 � 1.15%), Spanish and French (174 � 0.97%), Japanese (116 � 0.65%) and other languages
(211 � 1.18%).

3.2. Temporal Development of Publications

The annual numbers of publications between 1970 and 2019 are presented in Figure 1. In 1970,
30 documents on dinoflagellates were published, and until the early 1980s a low oscillation in the
number of publications could be observed (ranging from 26 to 90). From the quantitative perspective,
a crucial moment for dinoflagellates research was registered in 1991 with a remarkable increase in
the number of publications. In addition, in 2003 the number of publications exceeded 500 for the

27

http://www.worldometers.info/world-population/population-by-country/
https://data.worldbank.org/
https://epi.yale.edu/
https://epi.yale.edu/
http://www.fao.org/fishery/topic/16140


Publications 2020, 8, 50 4 of 18

first time. In mid-2014 the number of publications diverged from the fitted exponential trend. As a
result, in 2017, only 862 publications were achieved, a lower number than projected (1000 publications).
Furthermore, dinoflagellate publications of the last decade corresponded to 43.96% (7856 publications)
of all publications since 1970. Among these publications, articles (92.11%) and the English language
(95.69%) presented similar percentages when compared to the last 50 years. A linear regression model
was fitted to the data of the last decade and is showed in Figure S1. Although the linear model of the
last decade (R2 = 0.75) was less expressive than the exponential one presented in Figure 1 (R2 = 0.96),
it projected that in 2025, 1000 publications on dinoflagellates would be achieved (8 years later when
compared to the exponential model).
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3.3. Global Distribution of Publications

A world map of the scientific production (Figure 2) indicates research on dinoflagellates has been
conducted on all continents. The countries that published the most publications were the United States,
Japan and the United Kingdom. In general, specific European countries published more publications
than countries of America, Asia, Oceania and Africa. This ranking order changed when the scientific
production was normalized to the population data and resulted in a new ranking with New Zealand,
Norway and Australia in the top three positions. China and India, with populations of over one billion
people, occupied the last positions in this normalized ranking. Using the normalization per land area
data, Netherlands, the United Kingdom and Denmark were in the top three positions. Only the United
Kingdom appeared multiple times in the top three positions of all applied rankings (Table 1). In relation
to the countries that presented the most publications on dinoflagellates over the last decade, the United
States remained at the same position, followed by China, Germany and France. The most dominant
continent in terms of the number of publications was Europe with Germany, France, the United
Kingdom and Spain among the top 10 countries (Table S1).

The top 20 research centers are listed in Table 2 and headed by: Center National de la Recherche
Scientifique (CNRS), Alfred–Wegener-Institute and the Chinese Academy of Sciences. Although the
United States leaded the ranking of publications by countries, only one North American institution
(Woods Hole Oceanographic Institution) did appear in the top 20 institutions. This ranking was led by
European and Asian institutions (three French, two German, two Spanish, one Dutch, one Danish,
three Japanese, three Chinese and one Russian).
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Figure 2. World map according to the number of documents.

Table 1. Publications (n) distribution by countries.

Country M Habitants Dimension (M km2) n n/M Habitants n/103 km2

United States 331.00 9,147,420 4992 15.08 0.638
Japan 126.48 364,555 1590 12.57 4.265

United Kingdom 67.89 241,930 1541 22.70 6.354
Germany 83.78 348,560 1470 17.54 4.121

France 65.27 547,557 1393 21.34 2.526
China 1439.32 9,388,211 1256 0.87 0.131

Canada 37.74 9,093,510 1225 32.46 0.123
Australia 25.50 7,682,300 1110 43.53 0.144

Spain 46.75 498,800 958 20.49 1.898
Italy 60.46 294,140 619 10.24 2.054

South Korea 51.27 97,230 564 11.00 5.696
Denmark 5.79 42,430 260 44.89 6.036

New Zealand 4.82 263,310 437 90.62 1.615
Netherlands 17.13 33,720 423 24.69 10.186

Norway 5.42 365,268 419 77.29 1.088
Sweden 10.10 410,340 399 39.51 0.886

India 1380.00 2,973,190 352 0.25 0.107
Russian Federation 145.93 16,376,870 336 2.30 0.002

Mexico 128.93 1,943,950 336 2.61 0.171

Figure 3 shows the affinity of the collaboration of countries with >250 publications on
dinoflagellates. The 20 countries, plotted in this analysis, were distributed across four communities:
the first formed by Asian countries, the United States and Canada; the second formed by European
countries, Brazil and Mexico; the third formed by European countries, India and the Russian Federation;
and the fourth formed by Australia and New Zealand. The United States and the United Kingdom
demonstrated connections with all four communities. More frequent connections (represented by
the thickness of the line) could be observed between the United States and Australia, and the United
Kingdom and Germany.
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Table 2. Top 20 research centers.

Affiliation Country n

CNRS Centre National de la Recherche Scientifique France 494
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Germany 423
Chinese Academy of Sciences China 378
Woods Hole Oceanographic Institution United States 338
IFREMER Institut Francais de Recherche pour I’Exploitation de la Mer France 331
Sorbonne Universite France 286
Københavns Universitet Denmark 285
Hokkaido University Japan 250
University of Bremen Germany 238
CSIC—Instituto de Ciencias del Mar ICM Spain 233
The University of British Columbia Canada 222
University of Tokyo Japan 203
Scripps Institution of Oceanography Canada 201
Instituto Espanol de Oceanografia Spain 202
Utrecht University Netherlands 197
Ministry of Education China China 194
Russian Academy of Sciences Russian Federation 193
University of Queensland Australia 194
Tohoku University Japan 193
Ocean University of China China 188
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3.4. Sources and Citations

The total number of publications, the JCR Impact Factor and the SJR CiteScore of the top
20 journals are listed in Table 3. The highest number of publications on dinoflagellates was found
in the journal Harmful Algae, which was associated with the highest CiteScore index. On the other
hand, Marine Pollution Bulletin had the highest Impact Factor of this ranking. Among the high impact
phycology journals (IF ≥ 2), Algal Research (IF = 4.008), Journal of Applied Phycology (IF = 3.016),
European Journal of Phycology (IF = 2.756) and Algae (IF = 2.914) did not appear in this ranking.
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In addition, PLoS ONE was the only multidisciplinary journal listed in this ranking. In the last decade
of publications, Harmful Algae continued to lead the number of publications. Furthermore, the journal
Marine Drugs (IF = 4.073), which did not appear in the previous ranking, emerged on the ninth position
in relation to the number of publications and it achieved the highest impact factor index (Table S2).

Table 3. Top 20 journals with published dinoflagellate research with the associated Impact Factor,
CiteScore and number of documents (n).

Journal Impact Factor (2019) CiteScore (2019) n

Harmful Algae 3.707 8.8 749
Journal of Phycology 2.328 4.6 614
Marine Ecology Progress Series 2.326 4.2 509
Journal of Plankton Research 2.146 3.9 401
Marine Biology 2.050 4.3 322
Review of Palaeobotany and Palynology 1.425 3.1 251
Toxicon 2.201 4.1 259
PLoS ONE 2.740 5.2 257
Journal of Environmental Marine Biology and Ecology 2.247 4.6 237
Limnology and Oceanography 3.778 7.5 234
Palynology 1.330 2.0 236
Hydrobiologia 2.385 4.7 195
Aquatic Microbial Ecology 1.841 3.2 195
Phycologia 2.276 3.7 188
Estuarine Coastal and Shelf Science 2.333 4.5 186
Marine Pollution Bulletin 4.049 6.7 181
Palaeogeography Palaeoclimatology Palaeoecology 2.833 5.1 181
Deep Sea Research. Part II Tropical Studies in Oceanography 2.697 6.6 167
Journal of Eukaryotic Microbiology 2.143 4.6 148
Marine Micropaleontology 2.207 3.7 145

The top 20 most cited publications and their main information are listed in Table 4. This ranking
was headed by the journal Limnology and Oceanography, with four publications, followed by Nature
and Science, with three and two publications, respectively. The publication with the highest total
number of citations “Hoegh-Guldberg et al., 2007” received also the highest number of citations per
year. Although Harmful Algae was the journal with the highest number of published publications, it
did not appear in this specific list. Exclusively, the journals Limnology and Oceanography, Phycologia and
Journal of Phycology appeared in both rankings.

Table 4. Top 20 mostly cited publications on dinoflagellate research.

Title Authors Year Journal Cited by Citations per Year

Coral reefs under rapid climate
change and ocean acidification Hoegh-Guldberg, O. et al. 2007 Science 3029 252.42

A general method for isolation of
high molecular weight DNA
from eukaryotes

Blin, N. et al. 1976 Nucleic Acids Res. 2284 53.12

A review of harmful algal blooms and
their apparent global increase Hallegraeff, G.M. 1993 Phycologia 1694 65.15

Carbon to volume relationships for
dinoflagellates, diatoms, and other
protist plankton

Menden-Deuer, S.,
Lessard, E.J. 2000 Limnol. Oceanogr. 1418 74.63

Valuable products from
biotechnology of microalgae Pulz, O., Gross, W. 2004 Appl. Microbiol.

Biotechnol. 1087 72.47

Ecological and toxicological effects of
inorganic nitrogen pollution in
aquatic ecosystems:
A global assessment

Camargo, J.A., Alonso, Á. 2006 Environ. Int. 945 72.69

The evolution of modern eukaryotic
phytoplankton Falkowski, P.G. et al. 2004 Science 855 57.00

The effects of harmful algal blooms on
aquatic organisms Landsberg, J.H. 2002 Rev. Fish. Sci.

Aquac. 793 46.65
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Table 4. Cont.

Title Authors Year Journal Cited by Citations per Year

Microalgal biomarkers: A review of
recent research developments Volkman, J.K. et al. 1998 Org. Geochem. 793 37.76

Harmful algal blooms: Their
ecophysiology and general relevance
to phytoplankton blooms in the sea

Smayda, T.J. 1997 Limnol. Oceanogr. 778 35.36

Iron-limited diatom growth and Si:N
uptake ratios in a coastal
upwelling regime

Hutchins, D.A.,
Bruland, K.W. 1998 Nature 754 35.90

Nuisance phytoplankton blooms in
coastal, estuarine, and inland waters Paerl, H.W. 1988 Limnol. Oceanogr. 693 22.35

Ocean acidification causes bleaching
and productivity loss in coral
reef builders

Anthony, K.R.N. et al. 2008 P. Natl. Acad.
Sci. USA 690 62.73

The phagotrophic origin of
eukaryotes and phylogenetic
classification on protozoa

Cavalier-Smith, T. 2002 Int. J. Syst.
Evol. Micr. 680 40.00

The role of microorganisms in coral
health, disease and evolution Rosenberg, E. et al. 2007 Nat. Rev. Microbiol. 678 56.50

Oceanic 18S rDNA sequences from
picoplankton reveal unsuspected
eukaryotic diversity

Moon-Van Der Staay, S.Y.
et al. 2001 Nature 672 37.33

Unexpected diversity of small
eukaryotes in deep-sea
Antarctic plankton

López-García, P. et al. 2001 Nature 629 34.94

Flexibility and Specificity in
Coral-Algal Symbiosis: Diversity,
Ecology, and Biogeography of
Symbiodinium

Baker, A.C. 2003 Annu. Rev. Ecol.
Evol. Syst. 620 38.75

Analysis of a marine picoplankton
community by 16S rRNA gene
cloning and sequencing

Schmidt, T.M. et al. 1991 J. Bacteriol. 566 20.21

Identification of group—and
strain-specific genetic markers for
globally distributed Alexandrium
(Dinophyceae). II. Sequence Analysis
of a fragment of the LSU rRNA gene

Scholin, C.A. et al. 1994 J. Phycol. 558 22.32

3.5. Keywords Analysis

Keyword co-occurrence and their affinity are indicated in Figure 4. In this analysis, 41 keywords
were plotted and distributed into five communities. The first community (red color) revolved around
the keywords “harmful algal blooms”, “red tide” and “toxins”, probably influenced by research
related to the increase in harmful algal blooms involving the taxa “Alexandrium” and “Karenia brevis”.
The second community (green color) revolved around the keywords “phytoplankton”, “mixotrophy”
and “grazing”, probably influenced by enforcements to understanding dinoflagellate interactions
with others organisms (e.g., bacteria, diatoms and cyanobacteria) and their nutrition strategies.
The third community (yellow color) revolved around the keywords, “taxonomy”, “ultrastructure”
and “phylogeny”, probably influenced by evolutionary relationships and taxonomic refinements and
corrections within this group. The fourth community (purple color) revolved around paleontological
studies that used the keywords “dinoflagellate cysts”, “biostratigraphy” and “palynology”. Finally,
the fifth community (blue color) revolved around the keywords “Symbiodinium”, “Coral bleaching”
and “photosynthesis”, influenced by coral–endosymbiont interactions and the effects of climate change
on coral ecosystems. An additional keywords analysis of the last decade data, using author keywords
that appeared at least 50 times, was carried out and the results were represented as a cloudword
(Figure S2). As in Figure 4, the same keywords could be observed with the emergence of some new
keywords: “Marine drugs”, “Chemistry” and “Microalga”.

32



Publications 2020, 8, 50 9 of 18

Publications 2020, 8, x FOR PEER REVIEW  9  of  19 

 

“phylogeny”, probably  influenced  by  evolutionary  relationships  and  taxonomic  refinements  and 

corrections within this group. The fourth community (purple color) revolved around paleontological 

studies that used the keywords “dinoflagellate cysts”, “biostratigraphy” and “palynology”. Finally, 

the fifth community (blue color) revolved around the keywords “Symbiodinium”, “Coral bleaching” 

and  “photosynthesis”,  influenced  by  coral–endosymbiont  interactions  and  the  effects  of  climate 

change on coral ecosystems. An additional keywords analysis of the last decade data, using author 

keywords  that appeared at  least 50  times, was  carried out and  the  results were  represented as a 

cloudword (Figure S2). As in Figure 4, the same keywords could be observed with the emergence of 

some new keywords: “Marine drugs”, “Chemistry” and “Microalga”. 

 

Figure 4. Keywords communities and their associations regarding dinoflagellate research. 

Figure  5  shows  the  top  ten  genera  of  dinoflagellates  that  appeared  in  the  title,  abstract  or 

keywords of the published publications. Alexandrium leaded this ranking, followed by Prorocentrum, 

Symbiodinium  and  Gymnodinium—these  appeared  in  at  least  a  thousand  publications.  Ceratium, 

Protoperidinium and Noctiluca, located at the last positions of this ranking, were associated to almost 

six times fewer published publications than Alexandrium. 

Figure 4. Keywords communities and their associations regarding dinoflagellate research.

Figure 5 shows the top ten genera of dinoflagellates that appeared in the title, abstract or keywords
of the published publications. Alexandrium leaded this ranking, followed by Prorocentrum, Symbiodinium
and Gymnodinium—these appeared in at least a thousand publications. Ceratium, Protoperidinium
and Noctiluca, located at the last positions of this ranking, were associated to almost six times fewer
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3.6. Modeling Scientific Production

Economic (GDP), environmental (EPI) and social (HDI) indexes indicated significant influence on
the scientific production of dinoflagellate literature. Fish production (both aquaculture and capture)
was also the outcome of the model, however, while the capture had a positive relationship with
dinoflagellate publications, the aquaculture had a negative effect. The fertilizer consumption did not
indicate a significant influence (Figure 6).

Publications 2020, 8, x FOR PEER REVIEW  10  of  19 

 

 

Figure 5. Representation of the number of publications related to specific genera of dinoflagellates. 

3.6. Modeling Scientific Production 

Economic (GDP), environmental (EPI) and social (HDI) indexes indicated significant influence 

on  the  scientific  production  of  dinoflagellate  literature.  Fish  production  (both  aquaculture  and 

capture) was also the outcome of the model, however, while the capture had a positive relationship 

with dinoflagellate publications, the aquaculture had a negative effect. The fertilizer consumption 

did not indicate a significant influence (Figure 6). 

 

Figure 6. Coefficient estimates (± 95% confidence intervals) indicating the magnitude and direction 

economic,  environmental  and  social  variables  tested  for  a  model  of  scientific  production  of 

dinoflagellates.  Gray markers  represent  predictors  without  significant  influence,  red  and  green 

represent negative and positive effects, respectively. 
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dinoflagellates. Gray markers represent predictors without significant influence, red and green
represent negative and positive effects, respectively.

4. Discussion

First of all, it is necessary to mention that the number of publications on dinoflagellates is certainly
greater than those reported in this study. This is related to many local, regional or national journals that
are not indexed in large and international databases (such as Elsevier Scopus). Many publications on
dinoflagellates in Latin America, for example, have not been published in indexed journals (e.g., [26–28]).
However, recent research efforts have been initiated to showcase Latin American research conducted
on harmful algal, including dinoflagellates [29]. Some possible motives of publishing in local journals
include: (1) meeting the requirements of funding agencies, (2) easier publishing in the native language
and/or (3) contributing to the evolution of local journals [30].

Interestingly, 1000 publications should have been achieved in 2017 according to the exponential
regression model, which, however, did not occur (Figure 1). The divergence between the number of
publications and the exponential trend hints towards a resource limitation, such as for example human
resources and/or financial funding limitation. It is likely that this divergence may have been induced
by the financial crisis of 2008. The implemented interventions by public authorities to alleviate the
consequences of the financial crises resulted in multiple financial cuts for scientific research of several
countries [31] with a presumably time delayed effect on dinoflagellate research output. In summary,
a linear regression model expressed well the growth of the number of research papers on phytoplankton
between 1991 and 2013 [32]. Two linear trends were observed within the worldwide microalgae
research, the first was from 1970 to 2005 and the second from 2005 to the present [21]. Therefore,
although linear models are often used successfully for phytoplankton studies, in the present study an
exponential model was more suitable and it allowed illustrating the political and economic evidence
that negatively affected dinoflagellate research.

The global scientific production on dinoflagellates can be related to social, economic and
environmental aspects. The United States has long been the most productive and influential research
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country in the world, and when analyzing data from 1970 to 2019, the USA still appears as the top
country that publishes the most publications in several bibliometric studies [21,33,34]. However,
China overtook the United States in 2018 and became the quantitative largest producer of scientific
articles in the world. The United States still invests the highest amount of financial resources on research
and development (around USD 500 billion), while China stood second (around USD 400 billion) in 2015
with increased funding trends on research and development over the recent years. The spent funding
of the United States, on the other hand, remained on the same level in relation to previous years [35].
Although the United States spearheaded the two analyses of publications by country (Figure 2 and
Table S1), a substantial increase in the number of publications by China was observed and it rose from
the sixth to the second place, when analyzing both the last 50 and 10 years, respectively.

The Elsevier Scopus classifies the CNRS and the Chinese Academy of Sciences as research centers,
as well as the Alfred–Wegener-Institut, Woods Hole Oceanographic, University of Tokyo. However,
it should be mentioned that CNRS is the French National Centre for Scientific Research and it provides
a significant amount of funding for basic research in France. In a similar way, the Chinese Academy
of Sciences is an umbrella body of research centers. Therefore, they cannot be directly compared to
regional research institutions. Furthermore, although the United States leads the ranking in the number
of publications on dinoflagellates, only one American institution appears in the top 20 research centers.
This observation may be related to American research being distributed over several research centers
with diverse funding resources and not being centralized as for example in case of the French CNRS
and the Chinese Academy of Sciences.

Others phytoplankton groups (mainly, diatoms and cyanobacteria) were identified within
dinoflagellate research, (Figure 3). This can be explained by the assumed dominant role of diatoms for
primary production and the carbon cycle in the oceans. Diatoms have been considered model organisms
for oceanic phytoplankton research which has been reevaluated over the past few decades [36–38].
On the other hand, cyanobacteria are the largest group of prokaryotic organisms known for their
potential toxicity in marine, freshwater and eutrophic environments and therefore closely related to
HAB research [39,40]. It is likely that dinoflagellate research on understanding physiological dynamics,
bloom causes and consequences, and the biosynthesis of secondary metabolites has been studied
together with other HAB species.

Figures 4 and 5 highlight the Symbiodinium genus probably due to two issues: (1) the great
effort in the last decade to reorganize the diversity of this genus into a revised hierarchical structure
and (2) the close relation to coral reef research. The nine clades recognized in the literature [41]
have recently been reorganized into six new genera (in addition to Symbiodinium) belonging to the
Symbiodiniaceae family [42]. In addition, the most active countries in the fifth community of keywords
(blue color) (Figure 4) are countries in Oceania which may be related to the location of the Great
Barrier Reef and of other tropical coral reefs, and the reoccurrence of coral reef bleaching events in
these regions [43–45]. The evolutionary success of reef corals over time has been strongly linked
to the mutualistic relationship with endosymbiont dinoflagellates. The benefits of this relationship
include the supply and exchange of inorganic nutrients (carbon, nitrogen, phosphorus, etc.) that are
converted into carbohydrates, amino acids and other secondary metabolites under photoautotrophic
pathways. Although dinoflagellates from the Symbiodiniaceae family are almost always associated
to a symbiotic lifestyle, they can also be found in free-living mode [46]. The mutualistic relationship
can lead to biased conclusions because many publications on coral reefs may occasionally contain in
their keywords terms such as “Symbiodinium” or “Zooxanthellae”—as, for example, in the case of the
most cited publication reported in our investigation. Figure 4 also shows the palynology as another
active subarea in dinoflagellate research. A number of dinoflagellate species produce resting cysts
that have the potential (1) to become fossilized in sediments or (2) to be transported via ships’ ballast
waters [47,48]. The transportation of sediments and water containing dinoflagellate cysts has led to a
global dispersion of bloom-forming dinoflagellate species. Efforts in this research subarea have been
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related to fossil dinoflagellate cysts which are a useful tool for reconstructing past environmental and
oceanographic conditions [48,49].

Figure 5 demonstrates that the number of publications related to nontoxic dinoflagellate genera
(Ceratium and Noctiluca) was lower than toxic dinoflagellate genera, which indicates a greater research
interest on toxin-producing species. Alexandrium genus, that led the ranking of dinoflagellate genera,
is the major harmful dinoflagellate bloom genus with respect to diversity, impact potential and
cascading ecosystem consequences [11]. This suggests that interest in studying a certain dinoflagellate
genus (or species) increases as new evidence of a toxic potential is reported. Moreover, it should be taken
into account that some dinoflagellate species were taxonomically reclassified over time (for example,
Karlodinium veneficum and its basionym Gymnodinium veneficum and Ceratium genus that recently was
subdivided into Ceratium and Tripos for freshwater and marine species, respectively) [50,51].

Regarding the GLM, positive relationship between fish catch and dinoflagellate publications may
be related to HAB issues and their impacts on the fishery industry—which is mainly composed by
marine fishing (~87.5% of total fish catch) [52–54]. On the other hand, a negative relationship between
aquaculture production and dinoflagellate publications was observed maybe due to aquaculture
production includes most freshwater (51 million tons) than marine (30.8 million tons) production [55].
Understanding the main related factors leading to harmful dinoflagellates blooms is a crucial step for
appropriately managing aquaculture and agriculture activities. The escalation on food production
increased the amount of nitrogen compounds released in receiving waters [56,57]. Moreover, regions that
reported an increase in the agricultural activities (terrestrial and aquatic) experienced, almost in the
same proportion, the increasing frequency and environmental impact of HABs [56]. Although the
nitrogen role on dinoflagellate blooms have not been fully elucidated, this algae group have the highest
urease activity per cell than any other phytoplankton group [58], and in some cases, the urea uptake
can increase the toxicity of dinoflagellate [59]. Thus, understanding the causes and controlling factors
of dinoflagellate blooms can contribute to reducing the associated impacts on fishing activity [14].

The Recent trends analysis (Supplementary Materials) indicates the emergence of a new
dinoflagellate research subarea: cultivations and biotechnology. This is related to the appearance of new
keywords over the past decade, such as “Marine drugs”, “Chemistry” and “Microalga”—a common term
in publications that refer to cultivation and biotechnology of phytoplankton (Figure S2). These results,
when related to the rise of the journal Marine Drugs, may possibly be associated to the interest
in cultivating dinoflagellates to produce potential raw material for new drugs formulation with
biological activities.

5. Future Directions

The results presented in the previous sections give evidence to two emerging future hotspots
in dinoflagellate research: (1) taxonomy and classification, (2) harmful dinoflagellate blooms and
(3) cultivation and biotechnology. Figure 7 demonstrates a flowchart of the main emerging subareas
for dinoflagellate research. Research using “omics” (i.e., genomics, transcriptomics, proteomics and
metabolomics) approach is collated on the top of the flowchart and can help in the identification of
species, the detection of nutritional strategies, the interaction of symbiotic relationship with bacteria
and cnidarias, and the biosynthesis of biomolecules—especially regarding secondary metabolites.
These issues can contribute to the knowledge of the metabolic pathways and mechanisms involved
during bloom formation. At the bottom of the flowchart, attention was given to the cultivation of
dinoflagellates, and it made, according to the procedures, for optimizing the production of biomass
from other cultivated microalgae species.
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The development and use of robust platforms for data sharing and knowledge transfer/dissemination
will certainly contribute and facilitate a fast achievement of new solutions regarding taxonomic and
metabolic classifications. Several existing databases (e.g., Dictionary of Natural Products, AntiBase,
MassBank and Global Natural Products Social Molecular Networking) can be used to share raw data that
can contribute to the research advancement on biomolecules from dinoflagellate biomass [60,61].

The main products obtained from cultivating dinoflagellate biomass include: fatty acids that
have sustainable applications for animal and human food, and for biodiesel production [62–64],
the peridinin apocarotenoid and toxins that have strong antioxidant properties and helps to prevent
the formation of tumors [65–67], and also the amino acids and polysaccharides that can also be used in
biorefinery models.

The lack of suitable methods for culturing certain dinoflagellates limits potential in vitro and
in vivo tests and the commercialization of new drugs. The main difficulty in cultivating dinoflagellates
is the sensitivity to the shear forces [68]. The success in the production of dinoflagellate biomass,
as well as an improvement in the biosynthesis of secondary metabolites, will be an important step to
be achieved and represents a highly promising industry for the next decades [69].

6. Conclusions

This scientometric overview demonstrated a constant increase in the number of publications
on dinoflagellates from 1970 to 2019. Most of the top publishing countries were recognized for an
important marine fish production economy, with a clear interest in mitigating the impacts of harmful
algal blooms on capture production and the associated economy. In addition, the United States and the
United Kingdom are highly intertwined within a global research network. The bibliometric analysis of
dinoflagellate-related publications indicated that there are more publications in developed regions
compared with undeveloped regions. Furthermore, a clear research trend towards toxin producing
dinoflagellate genera is evident compared to nontoxin-producing genera.

Although a high number of publications have been reported in this study, it is clear that
dinoflagellate research will remain active and growing regarding (1) taxonomy and classification
issues, (2) harmful dinoflagellate blooms and (3) cultivation and biotechnological use of dinoflagellate
biomass. To address these gaps, international cooperation to make higher quality research can focus
in future works based on published data (for example, meta-analysis-based approaches) to clarify
taxonomic issues. Moreover, studies on the life-cycle assessment of dinoflagellate production must be
considered in future works.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6775/8/4/50/s1,
Figure S1: Number of publications by years at the last decade in the dinoflagellates research, Figure S2: Cloudword
representation of main author keywords (min. 250 times) on dinoflagellate research at the last decade, Table S1:
Top 10 countries in number of publications on dinoflagellates research, Table S2: Top 10 journals in the number of
publications in the last decade. Most information about these journals can be visualized in Table 3.
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3.2. Article 2: A mini review on challenges and opportunities in dinoflagellates 
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Abstract 

Dinoflagellates are photosynthetic protists commonly distributed in marine and freshwater environments and can be found in 
symbiotic associations. They are a significant primary producer and play a fundamental role in the functioning of aquatic 
ecosystems – especially for coral reefs. Dinoflagellates can produce a wide variety of secondary metabolites, and their toxins 
can affect fish, birds and mammals.  In recent years these toxins have been found to have potential cytotoxic, anticancer, 
antibiotics, antifungals activities. This mini review covers the main genera of dinoflagellates, and challenges and advances in 
their cultivation in addition to prospects for development of dinoflagellates-based products. 

Keywords: Microalgae, Biomass, Secondary metabolites, Toxins 

------------------------------------------------------------------------------------------------------------------------------------ 

Background 

Interest in microalgae has increased considerably in recent 
decades, mainly due to demand for sustainable biomass and 
bioprocesses, such as aquaculture, where microalgae play 
essential roles as live food for molluscs, and larvae of 
crustaceans and fish (Muller-Fuega, 2000; Garrido-Cardenas 
et al., 2018). Besides other applications, these 
photosynthetic microorganisms have also aroused interest 
in wastewater treatment and production of high commercial 
value molecules (eg., fatty acids, carotenoids and amino acids 
) and biofuels (Daroch et al., 2013; Salama et al., 2017; 
Oliveira et al., 2020a). According to Garrido-Cardenas et al. 
(2018), even with various species of microalgae isolated, 
global production of and research on microalgae are limited 
to a small number of taxa, such as Arthrospira of Spirulina 
group, that are intended mainly for human food or as a 
dietary supplement (Pan-Utai et al., 2018); Chlorella spp. for 
being a potential producer of β-1,3-glucan, an active 
immunostimulator with antioxidant capacity (Carballo et al., 
2019); Dunaliella salina, as a source of β-carotene (Ben-
Amotz, 2004) and; Haematococcus pluvialis, for astaxanthin 
extraction (Panis & Carreon, 2016).  

Dinoflagellates are a eukaryotic group of microalgae 
common in marine, estuarine and freshwater environments. 
Besides the species diversity (around 6,000 species), 
dinoflagellates have various structural shapes (amoeboid, 
coccoid, palmelloids, etc.), habitats (planktonic, benthic and 
epicontinental) and nutritional modes (photoautotrophic, 
heterotrophic, mixotrophic and phagotrophy). They play a 
significant role as primary producers and contribute to the 
functioning of aquatic ecosystems, especially coral reefs. The 
ecological activities of coral reefs heavily depend on the 
symbiosis between reef-building corals and zooxanthellae 
(reviewed in Jephcott et al., 2016 and Suggett et al., 2017).  

In addition, dinoflagellates also receive interest in research 
because some of their species produce toxins and they also  
cause harmful algal blooms (HABs) (Gravinese et al., 2018). 
Despite their great diversity, about 90 species have been 
reported as potential toxin producers (Burkholder et al., 
2008; González-Rodríguez et al., 2010; Speight & Henderson, 
2010; Saldarriaga & Taylor, 2017).  

Toxins from dinoflagellates can affect human and 
ecosystem health and, for a long time, this was the main 
reason for interest in their studies. However, in recent years 
dinoflagellate toxins have been found to have potential 
pharmaceutical applications (i.e. cytotoxic, anticancer, 
antibiotics, antifungals activities). In this context, this mini 
review reveals key information about dinoflagellates 
cultivation. The discussion also takes into account the major 
challenges, new insights and potential of the biomass 
production of dinoflagellates. 

Dinoflagellate Genera 

Specific dinoflagellate genera have been studied as a source 
of bioactive molecules (secondary metabolites): Alexandrium, 
Amphidinium, Gymnodinium, Karlodinium and Symbiodinium 
(Wang & Hsieh, 2002; Parker et al., 2002; Band-Schmidt et al., 
2014; Benstein et al., 2014; Lage et al., 2014; Molina-Miras et 
al., 2018; Langenbach & Melkonian, 2019).  

2.1 Alexandrium 

The genus Alexandrium is one of the major harmful algal 
bloom genera. Three different families of toxins were 
reported in this genus: saxitoxins (STX), goniodomins and 
spirolides; but they have not been fully characterized (Balech, 
1989; Touzet et al., 2008; reviewed in Anderson et al., 2012). 
Alexandrium spp. are considered opportunistic in relation to 
nutrition - different species have been found in both nutrient-
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rich (Spatharis et al., 2007) and nutrient-poor waters (Collos 
et al., 2014). In addition, bacteria and microalgae 
(dinoflagellate, Amphidinium carterae) have been observed to 
contain food vacuoles (reviewed in Jeong et al., 2010). 
Moreover, growth under the mixotrophic nutritional mode 
has also been reported for Alexandrium catenella (Legrand & 
Carlsson, 1998). 

2.2 Amphidinium 

Amphidinium spp. are toxic dinoflagellates found in coastal 
waters and tempered tropical estuaries (Steidinger & Jangen, 
1996). It is known for HABs that may produce mainly 
ichthyotoxins (Huang et al., 2009) and hemolytic substances 
(Echigoya et al., 2005). Abundance of peridinin (an 
apocarotenoid), located in the photosynthetic complex of 
most dinoflagellates, has been extensively studied in 
Aphidinium carterae (Hofmann et al., 1996); this 
apocarotenoid possesses strong antioxidant properties and 
can act against the tumors (Nishino, 1998; Barros et al., 
2001). Recently, amphidinols (APDs), secondary metabolites 
produced by this genus, have aroused a growing interest by 
presenting potential antifungal, antibacterial, antioxidant and 
antitumor agents (Satake et al., 2017; Iwamoto et al., 2017; 
Martínez et al., 2019). Although the structure of APDs is well-
documented (Satake et al., 2017), several factors related to 
the biosynthesis of these molecules are still not well 
understood. 

2.3 Gymnodinium 

Gymnodinium catenatum is the only dinoflagellate species of 
this genus that produces paralytic shellfish poisoning (PSP) 
and its greatest relevance is due to the fact that it can affect 
human health with neurological and gastrointestinal 
disorders, usually as a result of the consumption of 
contaminated shellfish (Band-Schmidt et al., 2008; Martínez 
et al., 2016). This species is widespread in temperate and 
tropical waters in many regions of the world (Hallegraeff et 
al., 2012) and the toxin profile may vary according to 
environmental factors (Negri et al., 2001; Oliveira-Proença et 
al., 2001; Holmes et al., 2002; Oh et al., 2010). As for the other 
dinoflagellates, studies on G. catenatum have mainly involved 
the ecophysiological approach for understanding the 
influence of environmental factors on the production of 
toxins. 

2.4 Karlodinium 

In the genus Karlodinium, a cosmopolitan species of 
temperate regions that has been more thoroughly studied is 
Karlodinium veneficum (García-Camacho et al., 2007; 
Gallardo-Rodríguez et al., 2012; López-Rosales et al. 2015). K. 
veneficum is a producer of karlotoxins (KmTxs) and it can 
feed by ingesting diatoms and copepods (Bachvaroff et al., 
2009; Waters et al., 2010; Place et al., 2012). The KmTxs can 
be easily isolated, and like APDs, it has hemolytic and 
ichthyotoxic activity. KmTxs are also more likely to function 

as anti-grazing and allelopathic. Investigations have shown 
that K. veneficum is able to reconfigure its cellular metabolic 
machinery and regulate dynamic protein expressions to cope 
with the stress caused by excess light. This is an interesting 
strategy for intensive cultivation to produce biomass (Cui et 
al., 2017). For this reason, K. veneficum proves to be a 
promising species for production of biomolecules. 

2.5 Symbiodinium (family Symbiodiniaceae) 

Symbiodinium spp. were recognized by arbitrary letters (e.g., 
A, B, C) that became referred to as "clades". Recently, in short, 
the genus Symbiodinium, based on genetics and ecology data, 
was split into seven new genera belonging to family 
Symbiodiniaceae, (LaJeunesse et al. 2018). Regardless of 
taxonomic classification, they are commonly approached for 
their endosymbiotic association with coral reefs (but they can 
also be associated with some species of anemones, jellyfish, 
sponges and others) (reviewed in Stat et al., 2006; Krueger & 
Gates, 2010). For these associations, most studies have 
sought to investigate the effect of environmental parameters 
on endosymbiosis with coral reefs and to clarify the main 
causes involved in coral bleaching events (McIlroy et al., 
2016; Grégoire et al., 2017; Bernasconi et al., 2019). However, 
peridinin and toxins contents have also aroused, albeit 
simple, interest in cultivation aimed at the biotechnological 
applications of Symbiodinium spp. biomass (Benstein et al., 
2014; Langenbach & Melkonian, 2019; Tsirigoti et al., 2020). 

Biomass Production 

Difficulties in reaching high biomass concentrations in 
cultures of dinoflagellates limit the commercial applications. 
This is mainly due to the sensitivity of many dinoflagellates to 
shear forces. Recently, the application of twin-layer porous 
substrate bioreactor (TL-PSBR) has been investigated in the 
laboratory. However, although projections are commonly 
made for large TL-PSBR (g m-2), operation of this bioreactor 
on an industrial scale is still doubtful (Langenbach & 
Melkonian, 2019). In addition to the TL-PSBR, bubble column 
photobioreactors (BC-PBR) have been used successfully for 
the biomass production of dinoflagellates (López-Rosales et 
al. 2016, 2017). The BC-PBR also controls shear stress, 
ensuring healthy growth of dinoflagellate cells. Moreover, the 
BC-PBR is likely to be more productive than the TL-PSBR 
because they have a larger photosynthetically active area 
than the biofilm of TL-PSBR. The improvement of 
photobioreactors for the intensive cultivation of 
dinoflagellates is still a basic process necessary for the 
development of this production chain.  

Potential Aplications in Aquaculture and Future 
Directions 

Due to the production of allelopathic compounds and the 
ability to grow under mixotrophic nutritional mode the 
dinoflagellates have a great potential to treat wastewaters. 
The microalgae, because of their use in wastewater 
treatment, have attracted increasing attention; they can 
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convert inorganic compounds into polyunsaturated fatty 
acids (PUFA), carotenoids, amino acids and others 
biomolecules, in addition to the secondary metabolites (Zeller 
et al., 2013; Oliveira et al. 2020b). This potential has not been 
sufficiently explored (Molina-Miras et al. 2020). In the case of 
PUFA, particularly docosahexaenoic acid (DHA) and 
eicosapentaenoic acid (EPA), exhibit biological activities and 
are considered in the treatment of heart disease, cancer, type 
1 diabetes and others (reviewed in Mendes et al., 2009). 
Hitherto, fish oil is the most widely used product of this 
category in the market even with some negative 
characteristics (e.g. distracting odor, allergic reactions, high 
refinery costs etc.). In addition, this use amounts to 
unsustainable exploitation of wild prey fish in aquaculture of 
fish and shrimp feed (Naylor et al., 2000). Based on this 
potential, a simplified model for production of dinoflagellate 
biomass using aquaculture wastewater is shown in Figure 1. 

Figure 1. Simplified integrated model for the production of 
dinoflagellate biomass using aquaculture wastewater. 

Recent interest in the cultivation of dinoflagellates has 
already resulted in substantial improvements and 
technological advances in the production processes. 
Limitation on commercial application of pigments and 
secondary metabolites produced by dinoflagellates is due to 
the lack of a reliable natural source of these macromolecules, 
since industrial-scale cultivation of dinoflagellates still faces 
barriers. Addressing some of these constraints will be a 
significant step towards the large-scale development of new 
inputs and drugs.  
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A B S T R A C T

The increased demands and dependence on depleted oil reserves, accompanied by global warming and climate 
change have driven the world to explore and develop new strategies for global sustainable development. Among 
sustainable biomass sources, microalgae represent a promising alternative to fossil fuel and can contribute to the 
achievement of important Sustainable Development Goals (SDGs). This article has reviewed the various appli-
cations of microalgal biomass that includes (i) the use in aquaculture and its sustainability; (ii) commercial value 
and emerging extraction strategies of carotenoids; (iii) biofuels from microalgae and their application in internal 
combustion engines; (iv) the use and reuse of water in microalgae cultivation; and (v) microalgae biotechnology 
as a key factor to assist SDGs. The future prospects and challenges on the microalgae circular bio economy, issues 
with regard to the scale-up and water demand in microalgae cultivation are also highlighted.   

1. Background

Microalgae biomass offers opportunities for sustainable development
of several industries, making its utilization important to drive global 
sustainable development. Microalgae can be found almost in any aquatic 
body that contains inorganic nutrients (such as carbon, nitrogen, phos-
phorus, and others oligoelements) and light (for performing oxygenic 
photosynthesis) although they can also grow heterotrophically using 
organic substrates (Chisti, 2008). Microalgal biomass can be converted 
into biodiesel, bioethanol, and biogas via processes such as liquefaction, 
pyrolysis, transesterification, fermentation, and anaerobic digestion 
(Abomohra et al., 2016; Muhammad et al., 2021; Oliveira et al., 2021a). 
In the food and pharmaceutical industries, microalgae are a proven 
source of essential amino acids and long–chain polyunsaturated fatty 
acids with antimicrobial, anti–cancer and antioxidants activities (Dantas 
et al., 2019; Lauritano et al., 2016). 

Although the microalgae production chain is considered highly 
sustainable, many hurdles related to the high demand for water and high 
loads of organic waste, including residual microalgal biomass, still 
remain under–explored (Bui et al., 2015; Ramos-Suárez and Carreras, 
2014; Serrà et al., 2020a). The current scenario of the large–scale pro-
duction of microalgae biomass is predominantly based on extensive 
practices, i.e., it uses old, inexpensive, and low–productivity systems 
that require large volumes of water (Colling Klein et al., 2018; Yadav 
et al., 2019). Furthermore, some microalgae market, such as Haemato-
coccus pluvialis and Dunaliella salina, for example, that have a specific 
market directed to the extraction of high–value compounds, with com-
ponents that do not exceed 10% of the biomass weight (astaxanthin and 
β–carotene, respectively), producing organic residues from microalgal 
biomass. In this way, providing further solutions to the remainin-
g/leftover biomass is therefore considered a key step for long–term 
development of microalgae industry. 
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Microalgae are also an ecofriendly and sustainable wastewater
treatment option. Most wastewater contains macronutrients, i.e., car-
bon, nitrogen and phosphorus, required for microalgal metabolism and 
growth, and therefore the growth of microalgae on wastewater for water 
treatment as well as energy production and/or other useful resources 
has encouraged research for development of circular economies (Hus-
sain et al., 2021; Jaiswal et al., 2020). Effective wastewater treatment 
using microalgae, while producing a valuable biomass and improving 
the water quality levels, can also reduce coastal eutrophication and its 
negative impacts on fishery and aquaculture, tourism, and public health 
(Mardones et al., 2021; Oliveira et al., 2020). 

This review attempts to deal with the knowledge gap for improving 
the sustainability of microalgae cultivation for feed, food, and bioenergy 
production through exploring water reuse strategies, and also the cir-
cular economy concept. Furthermore, microalgae biotechnology as a 
factor to assist United Nations Sustainable Development Goals is also 
presented. It is noteworthy that overcoming these current challenges 
related to the microalgae production will be beneficial not only for 
environment healthy but also for offset microalgal production costs. 

2. Microalgal biomass applications

2.1. Aquaculture

Microalgae production is highly intended for aquaculture demand. 
Large volumes of microalgae cultures are produced daily for all growth 
stages of bivalve molluscs (clams, mussels, oysters, and scallops) and 
abalone, crustaceans (shrimp and prawns), fish, and for zooplankton as 
live food (Ashour et al., 2019; Muller-Feuga, 2000). Over the last de-
cades, several hundred new species of microalgae have been reported, 
containing different biochemical compositions and biomolecules, but 
less than twenty microalgae species have been widespread use in 
aquaculture. Diatoms are the most prominent group of microalgae used 
in marine aquaculture due to its high abundance in marine and estuarine 
environments, and therefore serving as good choice for feeding larvae 
and adults of different fish species (Brown, 2002; Brown et al., 1997). 
The diatom Conticribra (Thalassiosira) weissflogii is a suitable source of 
proteins and carbohydrates for marine bivalve molluscs and crustacean 
larvae, while Chaetoceros muelleri stands out due to its fatty acids profile, 
cell size, and thin cell wall, which facilitates the digestion of intracel-
lular compounds by shrimp larvae (Brown, 2002). Commonly mixed 
diets containing two or more microalgae species have been a successful 
strategy for different life stages molluscs and fish. For example, the use 
of mixed diets containing Isochrysis galbana and Phaeodactylum tri-
cornutum improved the survival and growth rate of Anomalocardia bra-
siliana when compared to single microalga diets (de Oliveira et al., 
2016). On the other hand, green algae such as Scenedesmaceae (i.e., 
Scenedesmus, Desmodesmus and Tetradesmus genera) and Chlorella–type 
species are more utilized in freshwater aquaculture, due to not only their 
cell size and biochemical composition, but also due to the cosmopolitan 
nature and simple isolation from environment and easy cultivation 
(Marques et al., 2019; Muller-Feuga, 2000). Moreover, other specific 
microalgae that synthetize significant amounts of biocompounds, such 
as astaxanthin from Haematococcus pluvialis used in salmonid industry, 
also deserve to be highlighted (Benemann, 1992). The main microalgae 
species intended for aquaculture purposed are highlighted in Table 1. 

Historically, the type of production system used to produce micro-
algae in aquaculture hatcheries are simply designed photobioreactors, 
such as plastic bags, which may hinder the availability of light along the 
water column. Due to the low technology, the estimated cost for the 
production of microalgal biomass in this type of system is high i.e. USD 
50–400 kg− 1 (Oostlander et al., 2020). Although the use of mass 
microalgae systems is necessary to improve the sustainability of live 
foods for aquaculture, few efforts have been evolved in reducing the 
demand for water, which is already too high. 

Microalgae can be grown using various aquaculture wastewater. The 

use of aquaculture wastewater to reduce the water demand and produce 
a valuable biomass is indeed a highly sustainable approach. Some 
studies have reported the successful cultivation of both freshwater and 
marine microalgae using wastewater from different aquaculture systems 
(Andreotti et al., 2020; de Oliveira et al., 2020; Liu et al., 2019). 
Nevertheless, some microalgal exudates have the potential to inhibit 
beneficial bacteria in some systems, such as biofloc technology, making 
this route of water reuse unfeasible (Natrah et al., 2014). Despite that, 
the effects of adding microalgae to aquaculture systems that have a 
well–established microbiota, such as biofloc and synbiotic systems, has 
not been fully explored. 

Another emerging topic, which has a very promising market, is the 
usage of algal concentrates instead of using fresh microalgae cultures 
(Militz et al., 2018, 2021). Microalgae concentrates can replace facilities 
for massive cultivation of microalgae to feed larvae of fish and crusta-
ceans that depend on microalgae for their nutrition. However, the 
benefits and harms of using microalgae concentrates have not yet been 
fully explored due to the scarcity of information and data available in 
the specific literature. 

2.2. Carotenoid’s market 

Carotenoids are lipophilic compounds that constitute a class of 
terpenoid pigments derived from a 40–carbon polyene chain (Gong and 
Bassi, 2016; Guedes et al., 2011). They are responsible for the yellow, 
orange, brown, and red coloration of algae, plants, and animals (like 
flamingos, crustaceans and fishes) (Cezare-Gomes et al., 2019; Negro 
and Garrido-Fernández, 2000; Saha et al., 2020). 

2.2.1. Astaxanthin 
Astaxanthin, a red colored carotenoid, is a powerful antioxidant that 

has drawn interest from many industries. Because of the presence of 
hydroxyl (–OH) and ketone (–CO) functional groups, the structure of 
astaxanthin is considered polar and susceptible to oxidation, thereby 
providing antioxidant properties (Mota et al., 2021; Rammuni et al., 
2019). Due to these properties, this compound is widely explored in 
many areas, such as human health (pharmaceuticals, nutraceuticals and 
dietary supplements), cosmetics and nutrition (food, animal feed, pig-
ments for food and beverages). 

Table 1 
Main microalgae species used in aquaculture and their biocompounds.  

Species Water 
environment 

Utility Interest/ 
biocompounds 

Isochrysis galbana Marine Bivalve molluscs, 
Crustacea larvae, 
Zooplankton 

PUFAs, 
Fucoxanthin 

Pavlova lutheri Marine Bivalve molluscs PUFAs 
Chaetoceros spp. Marine Bivalve molluscs, 

Crustacea larvae, 
Zooplankton 

PUFAs 

Thalassiosira/ 
Conticribra spp. 

Marine Bivalve molluscs 
and Crustacea 
larvae 

EAA and 
Carbohydrates 

Navicula spp. Marine Crustacea larvae PUFAs 
Nannochloropsis 

spp. 
Marine Zooplankton and 

finfish 
PUFAs 

Chlorella spp. Freshwater Zooplankton and 
finfish 

PUFAs, EAA 

Scenedesmus spp. Freshwater Zooplankton and 
finfish 

PUFAs and EAA 

Ankistrodesmus sp. Freshwater Zooplankton and 
finfish 

PUFAs and EAA 

Arthrospira 
platensis 
(Spirulina) 

Freshwater Protein input EAA and 
Phycobiliproteins 

Haematococcus 
pluvialis 

Freshwater Coloring purpose 
(pigments) 

Astaxanthin 

PUFAs = polyunsaturated fatty acids; EAA = essential amino acids. 
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Total market value of astaxanthin is expected to reach US$ 800
million by 2022, with a compound annual growth rate of 8%. Although 
most of the commercially exploited astaxanthin is produced by synthetic 
routes, there is a growing demand for products derived from natural and 
sustainable sources, such as microalgae (Fábryová et al., 2020). 

Therefore, microalgae may play a fundamental role in this scenario, 
as many of them can synthesize astaxanthin as a secondary metabolite. 
Chlorella vulgaris, Chlorella zofingiensis, Chlorococcum wimmeri, Dunaliella 
salina, Botryococcus braunii and Scenedesmus obliquus are some species 
that have the potential to produce this carotenoid (Markou and Ner-
antzis, 2013; Rammuni et al., 2019). However, Haematococcus pluvialis is 
considered the best source of natural astaxanthin, and even under un-
favorable conditions, i.e., nutrient deficiency, high light intensity or 
high temperature, the microalga cells are able to synthesize up to 7% of 
dry weight of astaxanthin, and 90% of its total carotenoids content 
(Marinho et al., 2022; Shah et al., 2016). In this microalga, astaxanthin 
is found mainly in the form of esters comprising of astaxanthin mono-
esters (70%) and astaxanthin diesters (25%). Thus, only 5% of the total 
astaxanthin in H. pluvialis corresponds to free–astaxanthin (non-
–esterified form) (Lorenz and Cysewski, 2000). Commercially, astax-
anthin is mainly offered as an oleoresin, in which only 10–15% (w/w) 
corresponds to total astaxanthin, being the majority composed by 
acylglycerols and other minor carotenoids (Shah et al., 2016). In fact, 
esterified astaxanthin may be responsible for biological properties 
attributed to the free astaxanthin form, once these oleoresins are 
considered to be composed by the latter, overlooking the fact that this 
pigment is present in only low amounts (Holtin et al., 2009; Régnier 
et al., 2015; Richard et al., 2008). In a study conducted by Hosseini et al. 
(2020), the biomass of microalga H. pluvialis was mainly composed of 
carbohydrates, followed by proteins and lipids, and minor content of ash 
and moisture. According to these authors, the residual biomass consisted 
primarily of carbohydrates (~49%), which included a high percentage 
(~36%) of starch (α–glucan) and 13% of structural carbohydrates 
(glucan, mannan, and other carbohydrates), which corroborates with 
findings of Haque et al. (2017). The high carbohydrate content of the 
residual biomass highlights the potential for using it as a carbon source 
for subsequent bioethanol production, which not only proves that 
integration processes but also supports a sustainability improvement. 

There are many ways of recycling the residual microalgae biomass, 
and anaerobic digestion is one of the most common practices. By sta-
bilizing the waste in the absence of air, the anaerobic digestion process 
transforms the microalgal biomass into CO2, CH4 and also, a nutrient 
rich digestate, which can be used for production of biogas, biofertilizers, 
and animal feed (Onorato and Rösch, 2020). 

2.2.2. Lutein 
Lutein, a xanthophyll and yellow colored pigment, is an oxygenated 

carotenoid found primarily in plants, but also known to be produced by 
certain microalgae species, which, in fact, are able to achieve a higher 
lutein production rate than that in plants (Guedes et al., 2011; Lin et al., 
2015). The global market of this compound is increasing considerably 
and it is predicted that USD 357.7 million will be achieved by 2022. 

There are several microalgae species already identified as potential 
lutein producers, such as Chlorella sorokiniana (Chen et al., 2017), Par-
achlorella sp. (Heo et al., 2018), Chlamydomonas sp. (Zhao et al., 2019), 
Desmodesmus sp. (Xie et al., 2014), Tetradesmus obliquus (Ho et al., 
2015), and Chlorella vulgaris (Gong and Bassi, 2017). It is worth noting 
that some of these species might be able to produce up to 5 g of free 
lutein per kg biomass (Ochoa Becerra et al., 2020). The antioxidant 
(Ávila et al., 2016) and anti–inflammatory (Buscemi et al., 2018) 
properties, and its protective role in age–related macular degeneration 
(Eisenhauer et al., 2017) and diabetic retinopathy (Neelam et al., 2017) 
has made lutein very popular as a food and feed additive (e.g., to modify 
the color of egg yolk in hen farming) (Lin et al., 2015; Mussagy et al., 
2019). Besides this, researchers have reported other beneficial health 
effects of lutein such as the promotion of infant brain development and 

anti–atherogenic, antihypertensive, antiulcer, and anticancer activities 
(Fitzpatrick and Dhawan, 2014; Kim and Park, 2016). 

In a study conducted by Nobre et al. (2013), the microalga Nanno-
chloropsis sp., which is able to synthetize lutein, was cultivated in 
polyethylene bags of 10 L capacity to produce biomass feedstock for the 
production of fatty acids for biodiesel, biohydrogen, and pigments with 
high added–value. The residual biomass, after extraction of carotenoids, 
used as a substrate in a dark fermentation process in combination with 
Enterobacter aerogenes, could successfully produce green hydrogen. 
Huang et al. (2020) demonstrated the feasibility of ethanol production 
from pigment–extracted residual biomass of Chlamydomonas sp. The 
authors stated that the biomass residue was composed mainly of car-
bohydrates (65–67% starch, 8–10% cellulose). In addition, Chlamydo-
monas strain appears to be a microalgae candidate for integrated 
production of carbohydrate (64.3%, 438 mg L− 1 d− 1) and lutein pro-
duction (5 mg g− 1, 3.5 mg L− 1 d− 1). 

2.2.3. β–carotene 
β–carotene, an orange pigment, is a chemical compound produced by 

several microalgae, such as Chlamydomonas, Chlorella, Dunaliella, Mur-
iellopsis and Haematococcus spp. (Gateau et al., 2016; Pourkarimi et al., 
2020). It is precursor of vitamin A and have applications as food coloring 
agent and additive to cosmetics. Owing to the antioxidant properties, 
β–carotene is extensively used in food and animal feed. Besides, 
β–carotene increases immunity (Vílchez et al., 2011; Yaakob et al., 
2014), inhibits and prevent several types of cancer and tumors, and also 
shows effectiveness in controlling cholesterol levels and reducing the 
risk of cardiovascular diseases (Gateau et al., 2016; Rammuni et al., 
2019). 

Under certain conditions of light and salt, Dunaliella salina can 
accumulate β–carotene up to 14% of its dry weight, while other 
microalgae such as Chlorella zofingiensis and Arthrospira platensis may 
reach 0.1–2.0% of dry biomass weight (Raposo et al., 2015). Moreover, 
D. salina can also synthesize high amounts of triglycerides (Minhas et al.,
2016), with the fatty acid content reaching up to 30–60% of its dry
weight (Shah et al., 2016; Ye et al., 2008). Hence, the lipids extracted
from the residual biomass, after carotenoid recovery can be employed
for co–production of biodiesel through transesterification. Also, the
carbohydrate content in this microalga can be enhanced up to 50–60%
of dry weight, thereby making it viable to produce bioethanol as a
by–product in biorefineries (Doan et al., 2012).

Likewise, Francavilla et al. (2015) conducted a study where in re-
sidual mass of D. tertiolecta, post extraction of β–carotene and other high 
added–value products, was suitable for bio–oil and char production 
through fast pyrolysis. It is worth noting that the char produced was rich 
in nitrogen and other macro–elements, highlighting its use in agriculture 
as biofertilizer. Similarly, in a new method developed by Damergi et al. 
(2017), glycerin was recovered as a coproduct of β–carotene extraction 
from the filtered residue of the saponification of chlorophylls. 

There are many opportunities for future research, including explo-
rations of less studied carotenoids, such as peridinin (found in photo-
trophic dinoflagellates) and myxol (found in freshwater cyanobacteria), 
and their applications (Novoveská et al., 2019; Oliveira et al., 2020). On 
the other hand, a number of studies have been pointed fucoxanthin as a 
promising carotenoid for large–scale production. Thus, it is expected 
that the fucoxanthin market will be consolidated in the coming years. 

2.3. Bioenergy 

In recent years, microalgae feedstock based third–generation bio-
fuels are in the spotlight as new source of bioenergy and fuel production. 
This can be attributed to the sustainable aspects of microalgae cultiva-
tion compared to traditional generation biofuels from plants, which had 
high production cost, large land usage, higher water requirement with 
low conversion rates. The derivative products from microalgae biomass 
are diverse and range from liquid to gaseous fuels with various 
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applications mainly in the field of internal combustion engines. The next 
section will briefly describe the multiple possibilities of bioenergy from 
microalgae biomass and its application in different internal combustion 
engines. 

2.3.1. Classification of bioenergy based on microalgae biomass processing 
Microalgae as a feedstock is an excellent source of biomass to derive 

various forms of bioenergy. Microalgal biomass can be converted into 
multiple forms of renewable biofuels such as biodiesel, bio–oil, biogas, 
bioethanol and bio–hydrogen through transesterification, pyrolysis, 
liquefaction, fermentation and gasification, respectively (Günay et al., 
2019). The conversion methodology to convert algal biomass into these 
bio–energies can be classified as thermochemical, chemical and 
biochemical conversion as illustrated in Fig. 1. The most commonly 
exploited derivative of microalgae biomass is the synthesis of biodiesel 
and bio–oil. Biodiesel is comprised of a mixture of monoalkyl esters 
which are long–chain fatty acid methyl esters obtained from the lipid 
part of the algal biomass. Intracellular lipids can be extracted from the 
biomass using certain solvent extraction methods such as Bligh and 
Dyer, Soxhlet method, Folch method, pressurized liquid extraction and 
supercritical carbon dioxide (SC–CO2) extraction (Ryckebosch et al., 
2014). The oil acquired from the lipids is converted into biodiesel using 
multiple chemical reactions between triglycerides and alcohols through 
direct transesterification. Acid or alkali catalysts are used to mediate the 
reactions using an external heat source where the methyl esters separate 
from layer glycerol. 

Various solvents and their ratios used for lipid extraction and 
transesterification of algal oil extracted from different microalgae spe-
cies are listed in Table 2. Also, the lipid quantity and their respective 
yield rates alongside with several microalgae species are highlighted. 
Chaetoceros muelleri, Nannochloropsis spp., Botryococcus braunii, and 
Spirogyra sp. have the highest lipid quantities and yield rates (Arias--
Peñaranda et al., 2013; Duan and Shi, 2014; Jiménez Callejón et al., 
2014; Nagle and Lemke, 1990; Yuvarani et al., 2017). Other notable 

microalgal species that showed high content in fatty acid methyl esters 
are Dunaliella salina and Schizochytrium limacinum. As per American 
Society for Testing and Materials (ASTM) standards, the physicochem-
ical properties of most microalgal biodiesel fuels can be directly applied 
in the existing designs of diesel engines with minor adjustments 
(Ryckebosch et al., 2014). Bio–oil is another microalgal biomass deriv-
ative, which can be synthesized by treating the microalgae biomass to 
pyrolysis. The bio–oil produced after pyrolysis meets the ASTM stan-
dards for transportation sectors (Castello et al., 2018). Several param-
eters such as ash content, pyrolysis temperature, water, biomass 
composition and vapor residence time are taken into account to quantify 
the algal bio–oil productivity. Production of bioethanol from microalgae 
biomass is made possible by fermentation of the biomass with engi-
neered bacterium that produces chemical changes from organic (car-
bohydrates or starch) substrates through the action of some enzymes. 
Microalgae species such as Chlorella vulgaris, Spirogyra and Chlorococcum 
contain about 37% of starch by dry weight which is ideal for bioethanol 
or other higher–chained alcohol production like butanol (Behera et al., 
2015). Microalgae derived biodiesel and bio–oil can be homogenized 
with conventional diesel fuel at optimal conditions and utilized as fuels 
in compression ignition engines without any additional components or 
modifications. Equally, microalgae–based bioethanol or other higher 
alcohols can theoretically be used as a fuel additive with diesel in 
compression ignition engines or directly in a spark–ignition engine with 
conventional gasoline fuel. However, there are not many studies 
incorporating alcohols derived from microalgae biomass in internal 
combustion engines, which should be explored more by researchers. The 
next section deals with the applications of these biofuels in internal 
combustion engines with their respective performance, combustion and 
emission characteristics for different blend ratios. 

2.3.2. Application of microalgae biofuels in internal combustion engines 
The physicochemical properties of most biofuels such as kinematic 

viscosity, cetane number, density, lubricity, cloud point, flash point, 

Fig. 1. Classification of microalgal biofuels based on the processing of its biomass.  
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calorific value, lower heating value, octane number and latent heat of 
vaporization are fairly similar to conventional diesel or gasoline fuel. 
Therefore, to further enhance the fuel quality of conventional fuels, 
homogenizing these biofuels with conventional fuels is a key step to 
initiate the process (Kumar et al., 2011). Microalgae–based biofuels are 
homogenized using sophisticated ultra sonicators at different composi-
tions such as 80% diesel +20% biofuel (B20), 70% diesel + 30% biofuel 
(B30), 60% diesel + 40% biofuel (B40) to avoid phase separation. These 
fuel blends can be operated in compression ignition engines at various 
operating conditions. The effectivity of microalgal fuel blends can be 
quantified based on the corresponding engine output parameters such as 
brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), 
peak in–cylinder pressure (PP), heat release rate (HRR), exhaust gas 
temperature (EGT), oxides of nitrogen (NOX), carbon monoxide (CO), 
carbon dioxide (CO2), hydrocarbon (HC), particulate matter (PM) and 
smoke emissions. All these parameters collectively, fall under perfor-
mance characteristics (BTE, BSFC), combustion characteristics (PP, 
HRR, EGT) and emission characteristics (NOX, CO, PM, CO2, smoke) 
(Nautiyal et al., 2020). 

Microalgal biodiesel and bio–oil are predominantly used in 
compression ignition engines compared to other derivates of the 
biomass. Multiple studies which have incorporated different ratios of 
microalgal biodiesel and bio–oil with conventional diesel fuel to power a 
compression ignition engine are illustrated in Table 3. The blend mix-
tures are categorized alongside the respective microalgae biomass in 
addition to their effects on engine output characteristics. The studies 
presented in Table 3 have shown that biodiesel derived from the 
microalgae Spirulina sp., Chlorella protothecoides, Chlorella vulgaris, Sce-
nedesmus sp., Botryococcus braunii and Navicula sp. displayed an increase 
in brake specific fuel consumption (BSFC) when their compositions are 
higher in the homogenous blend. This can be attributed to the lower 
heating value and higher density of microalgal biodiesel compared to 

conventional diesel. Similarly, brake thermal efficiency (BTE) of the 
microalgal biodiesel blends is lower when considering higher mixing 
ratios, and vice versa. This is due to the inherent oxygen content of the 
biodiesel blend at lower ratios which facilitates complete combustion 
and improves BTE (Rajak et al., 2020a, 2020b, 2020c; Rajak and Verma, 
2018; Subramaniam et al., 2020). Combustion parameters, such as peak 
in–cylinder pressure (PP), have shown a slight reduction at lower loads 
and an increase in higher loads. This is due to the superior air-fuel 
mixing at higher loads which increases the in-cylinder temperature in 
PP. This is also boosted by the lower cetane number of microalgal bio-
diesel blends, which in turn, creates a longer ignition delay, causing 
more fuel mass to be combusted. At lower loads, the higher viscosity of 
the microalgal biodiesel blends dramatically hampers the combustion 
characteristics (Al-lwayzy and Yusaf, 2017; Krishna Kolli et al., 2019; 
Uludamar, 2018). 

In terms of emission characteristics, including CO emissions, fossil 
diesel is generally lower for the biodiesel derivatives of the above–stated 
microalgae species due to, in most cases, complete combustion. Also, the 
excess oxygen (O2) levels in the microalgal biodiesel oxidize the CO into 
CO2 emissions. Likewise, hydrocarbon (HC) emissions that are formed 
during air–fuel mixture, dramatically reduces for almost all microalgae 
species. Nitrogen oxide (NOX) emissions and particulate matter (PM) 
concentrations have an inverse relationship, trying to reduce one may 
increase the other. Almost all studies stated in Table 3 shows an increase 
in NOX emissions due to the longer residence time of exhaust gases, 
higher in–cylinder temperature and PP, which is boosted by the highly 
oxygenated nature of microalgal biodiesel (Arunprasad and Elango, 
2020; Hossain et al., 2019; Karthikeyan et al., 2020; Karthikeyan and 
Prathima, 2017; Tayari and Abedi, 2019). Dramatic reductions in smoke 
and PM emissions as a NOX trade–off for all microalgae species are also 
specified in Table 3. 

A generalized view of the effects of multiple microalgae species and 

Table 2 
Extraction solvents of multiple microalgae species with their lipid content for biodiesel and bio-oil production.  

Microalga Method of extraction Transesterification solvents and 
catalysts 

Lipid 
content 
(%) 

Yield rate 
(% dry 
weight) 

Nature of fuel Ref. 

Biodiesel Bio- 
oil 

Alcohol 

Ankistrodesmus 
falcatus 

Bligh and Dyer’s extraction 
(1:1) 

– 4–12 10–13 ✓ ✓ ✓ El-Sheekh and 
Hamouda (2016) 

Botryococcus 
braunii 

Solvent extraction Solution of Nano calcium oxide in 
methanol 

83–87 75–80 ✓ ✓ £ Prasad et al. (2015) 

Chaetoceros 
muelleri 

Hexane:2-propanol- 2:3 
extraction solvents 

Sodium hydroxide-methanol and 
hydrochloric acid-methanol 

46–90 10–16 ✓ ✓ £ Nagle and Lemke 
(1990) 

Dunaliella salina Soxhlet apparatus (n- 
hexane) 

Saponification (ethanoic 
potassium hydroxide (20%) +
hydrochloric acid) 

60–70 37–45 ✓ ✓ £ El-Ayouty et al. 
(2015) 

Nannochloropsis 
gaditana 

Saponification oil separation 
(potassium hydroxide +
methanol) 

Chloroform/methanol (1:1) and 
hexane + isopropanol 

35–60 27–58 ✓ ✓ £ Ryckebosch et al. 
(2014) 

Nannochloropsis 
oculata 

Photo-catalysis and 
methanolysis 

Methanol + 1% sulfuric acid 50–53 31–68 ✓ ✓ £ Arias-Peñaranda et al. 
(2013) 

Nanocholoropsis 
sp. 

Saponification/centrifugal 
(hexane solvent) 

Methanol + Sulfuric acid 50–56 20–25 ✓ ✓ £ Jiménez Callejón et al. 
(2014) 

Neochloris 
oleoabundans 

Ethanol butanol acetone 
extraction/Bligh and Dyer’s 
extraction 

For 1 L of algae oil, 200 mL of 
methanol + sodium hydroxide at 
60–80 ◦C 

13–15 2–6 ✓ ✓ ✓ (Du et al., 2016, 
2018) 

Phormidium 
valderianum 

Supercritical CO2 extraction Alcoholysis using petroleum ether 4–6 5–10 ✓ ✓ ✓ Chatterjee and 
Bhattacharjee (2014) 

Scenedesmus 
incrassatulus 

Bligh and Dyer’s extraction 
(1:2:0.8) 

Oil: methanol-1:6 20–25 17–21 ✓ ✓ ✓ Arias-Peñaranda et al. 
(2013) 

Bligh and Dyer’s extraction 
(1:2:0.8) 

Enzymatic transesterification 
(novozym oil: methanol- 1:6) 

23–24 19–21 ✓ ✓ £

Schizochytrium 
limacinum 

Bligh and Dyer’s extraction methanol, sulfuric acid, and 
chloroform heated at 90 ◦C for 40 
min 

63–37 36–39 ✓ ✓ ✓ Johnson and Wen 
(2009) 

Spirogyra sp. Soxhlet method (chloroform: 
methanol-2:1) 

2% sulfuric acid dissolved in 
methanol 

10–15 – ✓ ✓ £ Kumar et al. (2011) 

Soxhlet extraction (hexane: 
oil-1:2) 

– – 55–80 ✓ ✓ £ Konga et al. (2017)  
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their biodiesel derivatives with their corresponding engine outputs 
characteristics while operating in a compression ignition engine is 
described in Fig. 2. Studies which have incorporated Arthrospira platensis 
(Spirulina) and Chlorella vulgaris biodiesel have shown promising engine 

output results compared to other microalgae species. Moreover, fuel 
additives such as ethers and nano additives such as metal oxide are 
added to microalgae biodiesel to enhance their cetane index or ignition 
improvement by altering the physicochemical properties of the 

Table 3 
Effect of microalgae biodiesel and bio-oil at different compositions in compression ignition engines and the outputs.  

Microalga Fuel nature and blend 
composition 

Combustion 
characteristics 

Performance characteristics Emission characteristics Ref. 

Botryococcus 
braunii 

Biodiesel 
B20 

– BTE ↑ for TiO2–SiO2 nano 
additive doping to biodiesel 

↓ CO, ↓ HC, ↑ CO2, ↑ NOx Karthikeyan and 
Prathima (2017) 

Chlorella 
protothecoides 

Biodiesel 
B20 

↓Combustion 
duration 

5% ↑ BTE, 
3% ↓ BSFC for B100 and B20 

22% ↓ HC, 6.5% ↑ NOx, ↓ smoke emissions 
for B20 blend 

Yasar and Altun 
(2018) 

Biodiesel 
B20, B50 and B100 

6.1% ↓ EGT 5.7% ↑ BTE, 10% ↑ BSFC for B100 28% ↓ CO, 16% ↓ CO2, 7.4% ↓ NOx, 12% ↓ 
smoke emissions for B100 

Al-lwayzy and Yusaf 
(2017) 

Biodiesel 
B85 

– 6% ↑ BTE, 8.5% ↓ BSFC for EGR 
with ceramic coated engine 

47% ↓ CO, 51% ↓ HC, 18.5% ↓ NOx, 46% ↓ 
PM for EGR with ceramic coated engine 

Krishna Kolli et al. 
(2019) 

Biodiesel 
B20 

– – 10% ↓ CO, ↓ CO2, 9% ↑ NOx, on adding 
hydroxy and hydrogen to B20 blend 

Uludamar (2018) 

Chlorella vulgaris Biodiesel 
B10, B15 and B20 

– BTE ↑ for B20 blend 20% ↓ CO, 31% ↓ HC, 38% ↑ NOx for B20 
blend 

Patel et al. (2014) 

Biodiesel 
B40 and B50 

– BTE ↓, BSFC ↑ with increasing 
blend percentage 

↓ CO, ↓ HC, 1.5% ↓ CO2 Mathimani et al. 
(2017) 

Biodiesel 
B20 with hydrogen 

– 6.6% ↑ BSFC B20 blend with 
hydrogen gas 

↓ CO, ↓ HC, ↓ CO2, ↑ NOx Tayari and Abedi 
(2019) 

Bio-oil and Biodiesel 
B100 

↑ PP BTE ↓, BSFC ↑ ↓ CO, ↓ HC, ↓ smoke, ↓ NOx Satputaley et al. 
(2018) 

Navicula sp. Bio-oil 
B20 

– BTE ↑, BSFC ↓ ↓ CO, ↓ HC, ↓ smoke emissions Arunprasad and 
Elango (2020) 

Scenedesmus sp. Biodiesel 
B25 and B50 

↑ PP, ↑ HRR 0.3% ↓ BTE, 3.8% ↑BSFC for B25 
blend 

23% ↓ CO, 15% ↑ NOx, 95% ↓ PM Hossain et al. (2019) 

Spirulina spp. Biodiesel 
B20, B40 and B100 

– 3% ↓ BTE, 3.3% ↑ for B20 blend NOx ↓, Smoke emissions ↓ for ternary 
blends of B20, B40 & B100 

Rajak et al. (2020a) 

Biodiesel 
B20, B40, B60, and B80 

↓ PP 3% ↓ BTE, 3.2% ↑ for B20 blend CO2↑, NOx, 19% ↓, 42% ↓ smoke emissions, 
41% ↓ PM for B100 

Rajak et al. (2020b) 

5, 10, 15 and 20% 
hydrogen with biodiesel 

↑ PP BTE ↑, BSFC ↓ with 15% and 18% 
hydrogen addition 

36% ↓ CO2, NOx↑, 23% ↓ smoke emissions, 
51% ↓ PM 

Rajak et al. (2020c) 

Biodiesel 
B20 and B100 

↑ PP, ↑ HRR 1.2% ↓ BTE, 3.2% ↑ BSFC for B20 
blend 

CO2↑, 6.2% ↓ NOx, 2.6% ↓ smoke 
emissions, 12.4% ↓ PM for B20 and B100 

Rajak and Verma 
(2018) 

Biodiesel 
B0, B20, B40, B60, B80 
and B100 

1.7% ↓ EGT BTE ↓, BSFC ↑ with increasing 
blend percentage 

4% ↓ CO, 3% ↓ CO2, 
16% ↓ HC, 7% ↓ NOx, 12% ↓ smoke 
emissions for B20 blend 

Rajak et al. (2020c) 

Biodiesel 
B100 

1.6% ↓ EGT 2.7% ↓ BTE, 6.4% ↑BSFC for B100 5% ↓ CO2, 6% ↓ NOx, 3% ↓ PM for B20 and 
B100 

Rajak et al. (2019) 

SFC – Brake specific fuel consumption; BTE – Brake thermal efficiency; EGR – Exhaust gas recirculation; EGT – Exhaust gas temperature; HC – Hydrocarbon; HRR – 
Heat release rate; NOx – Nitrogen oxides; PM – Particulate matter; PP – Peak in-cylinder pressure. 

Fig. 2. General norms of microalgal biodiesel on engine output parameters.  
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homogenous blend. It has been reported that ethers improve the per-
formance and emission characteristics of a microalgae biodiesel blend 
(Satputaley et al., 2018).On the other hand, metal oxide nano additives 
improve the volatility and reduce the viscosity of the blend, which in 
turn leads to improved air–fuel mixing formation, superior atomization 
and vaporization during injection of fuel (Satputaley et al., 2018). 
Furthermore, this superior atomization enhances the spray penetration 
characteristics and ultimately delivers optimal engine output charac-
teristics. Although there is a lack of research microalgae biofuels in 
spark–ignition engines, it is theoretically possible to draw an inference. 
Bioethanol and other higher alcohols such as bio–butanol have similar 
physicochemical properties as conventional gasoline. Hence, at optimal 
proportions, these bio–alcohols can be homogenized with gasoline to 
power a spark–ignition engine. Therefore, so far, microalgae biodiesel 
can adequately replace conventional diesel fuel by producing compa-
rable engine output characteristics with superior engine efficiency in 
compression ignition engines. 

3. Water demand for microalgae cultivation

The high–water demand for aquaculture is one of the environmental
concerns for development of environmentally sustainable aquaculture. 
Microalgae can be cultivated using freshwater, brackish and saline wa-
ters. It is important to highlight that freshwater resources will still 
remain a requirement in the life–cycle processes with uses that may 
include pond makeup water to maintain target salinities (because of the 
water evaporation), flushing salt accumulation in ponds, equipment 
cleaning, and biomass processing (Venteris et al., 2013; Xu et al., 2020). 
Thus, reducing freshwater demand using feasible and sustainability 
routes in large–scale microalgae biomass production is of extreme ur-
gency. An interesting study conducted by Xu et al. (2020) reported 
guidelines for the implementation of microalgae biofuel systems with 
reduced water demand in the United States. The authors identified that 
is possible to scale algae biofuel production to 20.8 billion liters of 
algae–diesel annually without significant water–stress impact in the 
United States, based on three site–selection criteria: (1) biomass pro-
ductivity, (2) water–use efficiency and (3) water–stress impact. 

Most microalgae cultivation systems were developed thinking in 
terms of production volume (Nwoba et al., 2019). But, today, the use of 
large amounts of water as well as high loads of nutrients, labor and 
extensive land must be considered. However, the land where microalgae 
production is sited is not so relevant, because microalgae can be culti-
vated in non–arable land and hence does not compete with traditional 
agriculture (Chisti, 2007). The cultivation system employed also de-
pends on the species to be cultivated, for example, Arthrospira platensis, 
and other filamentous algae are more appropriated to be cultured in 
raceways ponds due to the sensitivity to higher shear forces present in 
closed photobioreactors (Grobbelaar, 2012). Details of different pro-
duction systems used for microalgae large–scale biomass production are 
shown in Table 4. 

Some of the main microalgae producing countries include China, 
Germany, Spain, and Italy. In these high economic countries, cultivation 
occurs mostly in closed photobioreactors (Araújo et al., 2021). However, 
the use of closed photobioreactors in low–income countries is not an 

accessible reality as these intensive systems require high investments 
and management skills, thus hindering the development of microalgae 
cultures in such countries (Merlo et al., 2021). Therefore, substantial 
advances in the development and improvement of low–cost systems for 
intensive microalgae cultivation are needed to contribute to the growth 
of this activity in low–income countries. 

3.1. Water reuse strategies 

A number of studies have explored microalgae growth in reused 
water, and several substances that can stimulate or inhibit microalgal 
growth and metabolism have been reported (Andrade et al., 2019; Fret 
et al., 2020; Molina-Miras et al., 2020; Molino et al., 2020). In a 
comparative study between a Jatropha curcas L. plant and microalgae, 
the water requirement for biodiesel production was 5,787 and 31,361 
m3 per ton of biodiesel, respectively (Zhang et al., 2014). Although 
microalgae do not compete for water and soil used in agriculture, the 
total volume requirements remain high. Therefore, reusing the cultiva-
tion water as well as recycling wastewater as culture medium, are 
emerging sustainable solutions for making biodiesel production from 
microalgae (Lu et al., 2020; Zhang et al., 2020). 

3.1.1. Growth stimulation 
Chemicals compounds and organisms used for microalgal harvesting 

can stimulate a microalgae culture. Some flocculants, such as ferric and 
aluminum salts, and chitosan, increasing the growth rate of microalgae 
(Delrue et al., 2015). Flocculants can also remove potential growth in-
hibitors, like ferric chloride–based flocculants that can form bond with 
some inhibitory macromolecules are removed during flocculation (Lu 
et al., 2020). Furthermore, microalgae and bacteria exudates, such as 
polyamines, peptides and glycopeptides synthetized by both microalgae 
and bacteria can have stimulatory effects (Grabski and Tukaj, 2008; 
Sabia et al., 2015). Interestingly, the cultivation of a strain of Spirulina 
sp. in reused culture medium for four consecutive cycles led to an 
increased carbohydrate content, which would be an interesting strategy 
for the production of biohydrogen and/or bioethanol, contributing to 
the microalgal circular economy (Andrade et al., 2019). 

3.1.2. Growth inhibition 
There are several substances that may cause harmful effects on 

microalgae metabolism when reutilizing water from the spent medium. 
Such substances involving growth inhibition include cell wall debris, 
excessive bacteria, high load of dissolved organic matter, salinity and 
harvesting process (Lu et al., 2020). Some species, such as Nanno-
chloropsis spp., split their cell walls during cell division, and glycopro-
teins and polysaccharides of the cell wall of this type of algal species 
serve as substrate for inducing the rapid proliferation of bacteria 
(Rodolfi et al., 2003). In general, when utilizing reused water for 
microalgae cultivation, bacteria, due to smaller size, remain in the water 
after microalgal cells are harvested. Thus, some expensive methods, 
such as ultrafiltration or UV treatment are required to enable water 
reuse, as bacteria can easily dominate a microalgae culture system due 
to its accelerated growth and metabolism (Deschênes, 2016). Conse-
quently, the accumulation of organic matter may also hinder the 

Table 4 
Productive characteristics for different type of system used in microalgae cultivation.  

Production system Implementation cost Skilled labor Energy demand Biomass reached (kg m− 3) Water use (m3 biomass ton− 1) 

Open systems 
Open pond Very low No No 0.05–0.5 20,000–2,000 
Aerated tank Very low No Low 0.02–0.8 50,000–1,250 
Raceway ponds Low No Low 0.5–1.5 2,000–666.67 
Thin-layer Very high Yes High 10–50 100–20 
Closed systems 
Photobioreactor High Yes High 2–5 500–200 
Fermenter Very high Yes High 5–20 200–50  
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penetration of light, thus reducing the ability of microalgae to efficiently 
perform photosynthesis (González-Camejo et al., 2020). 

Reused water contains nutrients, which may reduce nutrient addi-
tion costs (Lu et al., 2020). However, monitoring the oligoelements 
concentrations in the reused water is an expensive and maybe an un-
viable process. Also, accumulation of specific elements (such as mag-
nesium) can also cause cell aggregation (Vandamme et al., 2012). 
Accumulation of ions in algal cultures can increase the salinity but it can 
be measured over the time of microalgae cultivation. Chemicals used for 
harvesting microalgal cells can also be toxic to microalgae. Strong 
photocatalytic activity of nanocomposites can kill microalgae cells in 
presence of light (Serrà et al., 2020b). NaOH–residual in reused medium 
inhibited the photosynthetic activity of Dunaliella salina (Pirwitz et al., 
2015). Thus, further research on microalgal cells harvesting using 
green/bio–flocculants may be a promising topic for the improvement of 
water reuse techniques after flocculation–based harvesting. 

3.2. Wastewater as culture medium 

Sever drinking water shortage around the globe has urged leading 
researchers to look for strategies for reutilizing different types of efflu-
ents for microalgae cultivation (Oliveira et al., 2021b). Due to their 
metabolic versatility, microalgae are promising organisms for treating a 
variety of wastewater types using photoautotrophic, heterotrophic or 
mixotrophic routes (Wollmann et al., 2019). In recent years, micro-
algae–based wastewater treatment process has been considered one of 
the most promising technologies for the advanced treatment of waste-
water. Some of these examples are illustrated in Table 5. For optimal 
microalgae growth in wastewater, the effluent should have the following 
conditions: (i) low turbidity, ensuring the light penetration, if conducted 
under photoautotrophic and mixotrophic conditions, (ii) absence of 
pharmaceuticals and/or heavy metals pollutants, if the biomass is 
intended for food and feed applications, (iii) low/moderate microbial 
contamination, mainly by bacteria and/or predators, such as protozoa, 
for example (Nagarajan et al., 2017; Sánchez Zurano et al., 2020; 
Wollmann et al., 2019). A mutual and synergistic effect maybe found 
between microalgae and bacteria in a co–existing wastewater treatment 
system (Ma et al., 2014). Algal–bacterial consortia could enhance the 
assimilation of nutrients, notably nitrogen and phosphorus, resulting in 
a higher biomass productivity (Jiménez-Pérez et al., 2004; Unnithan 
et al., 2014). Generally, bacteria assimilate organic carbon for its growth 
and provide CO2, which in turn is favorable for microalgae, especially if 
photoautotrophic metabolism is applied. On the other hand, microalgae 
produce oxygen and other nutrients that could be assimilated by bac-
teria (Nagarajan et al., 2019; Unnithan et al., 2014). This consortium 
could enhance the nitrogen and phosphorus removal, producing a 

biomass that can be used as biofertilizers for agriculture added with 
primary nutrients. 

4. Microalgae biotechnology as a factor to assist United Nations
Sustainable Development Goals

In 2015, the United Nations adopted 17 global priorities and 169 
targets through its Sustainable Development Goals (SDG), which were 
set to be implemented over the next 15 years. The 17 SDGs aim to 
achieve a better and more sustainable future for both people and planet 
at regional, national and global scale via interlinked and integrated 
SDGs (United Nations, 2015). 

With over 200,000 microalgae species discovered, and only a 
handful number of microalgal species used for a relatively small number 
of industrial applications, this highly diverse group of microorganisms 
can assist some of the SDG’s achievements. Examples of the role and the 
impact of microalgae biotechnology in contributing with the achieve-
ment of the UN SDGs are shown in Table 6 and Fig. 3, respectively. More 
specifically, contributions of microalgae to support six SDGs are dis-
cussed below (Sutherland et al., 2021):  

• SDG 1 – No poverty: seeks to eradicate poverty in all its forms and
everywhere by 2030. Expanding microalgae cultivation in low- 
income countries may be a strategy that could help to eradicate
poverty by creating new jobs and generating new sources of income
for the society.

• SDG 2 – Zero hunger: seeks to address adequate human nutrition and
food security, while promoting sustainable agricultural practices.
Protein is an essential key macronutrient for humans, and micro-
algae, including both eukaryotic algae and cyanobacteria, have long
been recognized as source of protein with all essential amino acids
required in the human diet. They are also valuable source of lipids,
fatty acids, vitamins and minerals, helping to boost not only the
human nutrition but also aquaculture practices.

• SDG 3 – Good health and well–being: seeks to improve human health
and quality of life. Secondary metabolites from microalgae, such as
carotenoids, can be used in the enriching of foods and beverages
promoting bioactive activities – function foods. Moreover, several
other molecules found in microalgal biomass can be used for devel-
opment of new drugs for the treatment of viruses, bacteria, fungi, and
tumors.

• SDG 6 – Clean water and sanitation: focuses on addressing the global
availability of water, including reducing pollution through increased
wastewater treatment as well as water recycling. The use of micro-
organisms like microalgae to clean nutrient enriched wastewaters
has been successfully demonstrated.

Table 5 
Removal of pollutants by microalgae cultivated in different types of wastewaters.  

Microalga Wastewater Main composition Culture system Ref. 

Arthrospira platensis Desalination concentrate Ca2+, CaCO3, Cl− , Fe3+, K+, Mg2+, 
Na+, SO2−

4 

100-L fiber photobioreactor, 4000-L raceway 
pond Matos et al. (2021) 

Chlorella sp. (MUR 270) Anaerobically digested 
abattoir effluent 

COD, NH4–N, TN, TP 250 mL Erlenmeyer flasks Vadiveloo et al. (2020) 

Chlorella vulgaris (CA1) Dairy anaerobic digestion NH4–N, TC, TN, TP 250 mL Erlenmeyer flasks Pang et al. (2020) 
Chlorella vulgaris (UTEX 

2714) 
Municipal centrate COD, TN, TP, NH4–N 250 mL Erlenmeyer flasks Ma et al. (2014) 

Galdieria sulphuraria (CCMEE 
5587.1) 

Urban wastewater NH4–N, TN, TP Enclosed polyethylene bag (3 m2) Selvaratnam et al. 
(2014) 

Nannochloropsis gaditana 
(Clone 130) 

Desalination concentrate Ca2+, CaCO3, Cl− , Fe3+, K+, Mg2+, 
Na+, Si, SO2−

4 

500 mL Erlenmeyer flasks, inverted conical 
photobioreactor (3.5-L) Matos et al. (2015) 

Scenedesmus sp. Primary domestic Ca2+, Cl− , COD, Mg2+, Na+, NO−
3 , 

PO3−
4 , SO2−

4 

Thin-layer cascade reactor (32 m2) 
Sánchez Zurano et al. 
(2020) 

Scenedesmus sp. (LEA 01) Sanitary landfill leachate Heavy metals (Cd, Ni, Cu, Zn), 
NH3–N, NO−

2 , NO−
3 

1000 mL Erlenmeyer flasks 
de Souza et al. (2021) 

Scenedesmus intermedius Pig manure NH4–N, TN, TP 500 mL Erlenmeyer flasks Jiménez-Pérez et al. 
(2004)  
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• SDG 7 – Affordable and clean energy: seeks to ensure access to
affordable, reliable sustainable and modern energy for all. Micro-
algal biomass is already considered as a suitable feedstock for 3rd
generation biofuel production, with a plethora of studies found in the
literature about biodiesel, bioethanol, butanol, biogas (methane),
bio–oil, and biohydrogen production from microalgae.

• SDG 12 – Responsible consumption and production: seeks to ensure
sustainable consumption and production patters. In particular,
plastic is recognized as an important product in modern–day life, and
algal–based bioplastics are considered to be an environmentally
friendly alternative compared to conventional petro–plastics.
Although algal bioplastics is currently in its infancy with the

technology routes still under research, bioplastics such as poly-
hydroxyalkanoates (PHA) and polyhydroxybutyrate (PHB) manu-
factured from microalgal–derived intracellular components have 
received considerable interest by industry.  

• SDG 14 – Life below water: conservation and sustainable use of
oceans and marine resources are the key element of this goal. Agri-
cultural run–off, contaminants, sediment, pathogens microorgan-
isms, and nutrients, notably N and P, into waterways has resulted in
eutrophication, affecting the aquatic life. Algal turf scrubbers (ATS)
and periphyton ponds, for example, are some emerging technologies
that can help to treat fresh and coastal marine water bodies

Table 6 
Examples on how microalgae biotechnology can assist with the achievement of the United Nations Sustainable Development Goals (SDG).  

Sustainable 
Development 
Goal 

SDG objective Microalgal role Microalgal purpose Ref. 

SDG – 1 No poverty Cultivation of microalgae in system with low-energy 
and -investment requirements that do not require 
technical skills (such as open ponds, aerated tanks, and 
raceway ponds). 

Microalgae cultivation can create new jobs and 
improve the local economy from low-income countries 
from Africa and South America. 

Ahiahonu et al. 
(2021) 

SDG – 2 Zero hunger Source of protein, amino acids, polyunsaturated fatty 
acids, vitamins, minerals and pigments. 

Support human nutrition, nutraceutical and functional 
food, dietary supplement, feed supplement for 
agriculture and aquaculture. 

Matos (2020) 

SDG – 3 Good health and 
well-being 

Metabolites from microalgal biomass used to prevent 
diseases and/or development of new drugs 

Support human health, nutraceutical and functional 
food, and potentially novel compounds for new drugs 

Dantas et al. 
(2021) 

SDG – 6 Clean water and 
sanitization 

Wastewater treatment via nutrient uptake into 
microalgal biomass. Bioremediation of emerging 
contaminants such as heavy metals through 
bioadsorption. Biodegradation of pharmaceutical 
compounds. High rate algal ponds (HRAPs) driven by 
solar-UV mediated pathogen disinfection. 

Microalgae to bioremediate wastewaters have been 
successfully demonstrated including full scale-systems. 
Clean water availability is vital for the environment, 
human health and economic development. 

(Galès et al., 2019; 
Vassalle et al., 
2020) 

SDG – 7 Affordable and 
clean energy 

Feedstock of third generation biofuels, including 
biodiesel, bioethanol, biogas (methane), biohydrogen, 
jet fuel 

Biofuels from microalgae have been highlighted as an 
alternative renewable energy. 

(Jacob et al., 
2021; Oliveira 
et al., 2021a) 

SDG – 12 Responsible 
consumption and 
production 

Microalgal bioplastics produced by either from direct 
microalgal biomass or from cellular components. 

Bioplastics from renewable natural source like 
microalgae are considered to be an environmentally 
friendly alternative. 

Beckstrom et al. 
(2020) 

SDG – 14 Life below water Bioremediation of diffuse pollution intensified by run- 
off contaminants, such as nutrients (N/P), sediment 
and microorganisms. 

Algal turf scrubbers, filamentous algae nutrient 
scrubbers and periphyton-based storm-water 
treatment areas have been tested for mitigation of 
nutrient pollution in waterways. 

(Aston et al., 
2018; Salvi et al., 
2021) 

SDG – 15 Life on land Microalgae can be cultured in open ponds using non- 
potable water in places like arid and semi-arid regions, 
reversing possible land degradation. 

Microalgal biomass can improve human livelihoods 
located in vulnerable regions like deserts. 

(He et al., 2018;  
Oliveira et al., 
2019)  

Fig. 3. Impact of the use of microalgae to the achievement of the United Nations Sustainable Development Goals.  
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overloaded with diffused nutrients. Moreover, microalgae can help
to increase sustainability in aquaculture.  

• SDG 15 – Life on land: focuses on managing natural resources,
including combat land affected by desertification, drought and
floods. Large scale cultivation of microalgae on non–arable land
using brackish water, seawater or wastewater is feasible, especially
in arid and semi–arid regions where ample solar irradiance favors the
photosynthetic capacity.

5. Future perspective and challenges

Although a significant amount of research on microalgae has been
conducted in the last decades, it cannot be considered exhaustive. The 
various stages of development of microalgal biotechnology should serve 
as an incentive for old and new researchers in this multidisciplinary 
research field. For example, integrating microalgae cultivation and 
wastewater treatment, allowing dual function like removing contami-
nants from diverse effluents and generating biomass rich in bio-
molecules have been successfully demonstrated. This integrated process 
requires low technology, low capital and operational cost. The appro-
priate cultivation system will depend greatly on the desired final prod-
uct. For example, nutraceutical compounds from microalgae cultured in 
photobioreactor require high technology and operational system, in 
addition to the further steps for extraction and by–product purification. 
On the other hand, simple biological processing of algal biomass via 
anaerobic digestion for biogas production is less expensive. Biomass 
harvesting, due to small cell size (3–30 μm), low cell concentrations 
(0.3–2.0 g L− 1) and neutral buoyancy of microalgae, is arguably the 
most energy–intensive step accounting for up to 30% of the total pro-
duction cost. Further efforts towards optimizing nutrient loads, culture 
system, water recycling, harvesting techniques at industrial scale, 
byproduct extraction and purification can greatly advance the micro-
algal bioeconomy. 

Even after several years of research, the downstream processing of 
microalgae biomass still requires significant advances to reach industrial 
maturity. The structural diversity and rigidity of microalgal cell walls 
complicate the standardization of an efficient downstream processing 
method for disruption of microalgal biomass and subsequent recovery of 
intracellular biocomponents. Even if downstream methods fail during 
application for a new microalga species and/or scale–up for industrial 
applications, reducing the efforts during operation can provide signifi-
cant benefits in terms of investment and operating costs. 

Furthermore, microalgae–based carbon sequestration is another 
important topic for sustainable development in many countries. The 
typical technologies for capturing CO2 demand considerable financial 
costs, which can make their use unfeasible in low–income countries. 
With a view to developing affordable technologies, the US National 
Energy Technology Laboratory recommends a carbon capture cost of 
around US$ 40 per ton of CO2 (Daneshvar et al., 2022). The use of 
microalgae for this application is part of this planning, as a potential, 
efficient, low–cost, and sustainable alternative in the world economic 
scenario. However, most approaches have focused on the selection of 
promising species for CO2 sequestration at laboratory scale (Prasad 
et al., 2021). 

Finally, although climatic conditions in several low–income coun-
tries in Africa, South America, and South Asia are favorable for micro-
algae cultivation (i.e., high levels of sunlight and high/moderate 
temperatures), there is very limited research on cultivation of micro-
algae in these regions (Ahiahonu et al., 2021). In order for microalgae to 
successfully impact the achievement of SDGs, policy actions and eco-
nomic frameworks that are sensitive to these regions between now and 
2030 will be required. 
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Araújo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I.C., Bruhn, A., Fluch, S., 
Garcia Tasende, M., Ghaderiardakani, F., Ilmjärv, T., Laurans, M., Mac Monagail, M., 
Mangini, S., Peteiro, C., Rebours, C., Stefansson, T., Ullmann, J., 2021. Current status 
of the algae production industry in Europe: an emerging sector of the blue 
bioeconomy. Front. Mar. Sci. 7, 1247. https://doi.org/10.3389/ 
FMARS.2020.626389/BIBTEX. 
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Martínez, C., 2004. Growth and nutrient removal in free and immobilized planktonic 
green algae isolated from pig manure. Enzym. Microb. Technol. 34, 392–398. 
https://doi.org/10.1016/j.enzmictec.2003.07.010. 
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4. Chapter 2 – Research articles

4.1. Article 4: Light induces peridinin and docosahexaenoic acid accumulation in the 

dinoflagellate Durusdinium glynnii 
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Abstract 
Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applica-
tions and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, 
carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were 
investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be 
high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred dur-
ing high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total 
carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) 
bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont 
dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts.

Key Points 
• Peridinin has a protective role against chlorophyll photo-oxidation
• High light conditions induce cellular peridinin accumulation
• D. glynnii accumulates high amounts of DHA under optimal light supply

Keywords Antioxidant · Carotenoids · Light harvesting · Photosynthesis · Symbiodiniaceae

Introduction

Promoting sustainable development in the face of an increasing 
human population requires a continuous pursuit for new biore-
sources and bioprocesses. Recent studies have revealed that 
microalgae are one of the most promising bioresource towards 
a global sustainable development (Chen et al. 2020; Tang et al. 
2020). New emerging microalgae-based products derived from 
its biomass include biofuels, food and feed, biofertilizers, and 
drugs. Marine dinoflagellates have attracted great attention for 
bioproduct development because of their capacity to synthe-
size a diverse range of high-value bioactive molecules (Assun-
ção et al. 2017; López-Rodríguez et al. 2019). Although there 
is a great interest in bioactive molecules from dinoflagellates, 
the available information on the cultivation techniques of dino-
flagellates, biomass processing, and its potential applications 
are scarce in the literature (Oliveira et al. 2020).

Dinoflagellates can produce different types of carot-
enoids, such as violaxanthin, fucoxanthin, zeaxanthin, and 

 * Carlos Yure B. Oliveira 
 yureboliveira@gmail.com

1 Department of Fishing and Aquaculture, Federal Rural 
University of Pernambuco, St. Dom Manuel de Medeiros, 
Dois Irmãos, Recife 52171-900, Brazil

2 Center of Agricultural Sciences, Federal University of Santa 
Catarina, Florianópolis 88034-001, Brazil

3 Department of Food Science and Technology, Federal 
University of Santa Catarina, Florianopolis 88034-801, 
Brazil

4 Institute of Biological Sciences and Health, Federal 
University of Alagoas, Maceio 57072-900, Brazil

5 Department of Biochemistry, Federal University 
of Pernambuco, Recife 50740-550, Brazil

6 Department of Oceanography, Federal University 
of Pernambuco, Recife 50740–550, Brazil

/ Published online: 16 August 2022

Applied Microbiology and Biotechnology (2022) 106:6263–6276

65

http://orcid.org/0000-0001-9237-1869
http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-022-12131-6&domain=pdf


1 3

peridinin (Molina-Miras et al. 2018; López-Rodríguez et al. 
2020; Zahedi Dizaji et al. 2021). The latter, in particular, has 
a dual role in the photosynthetic capability of phototrophic 
dinoflagellates: the first role in capturing blue-green light 
(470–550 nm range), outside the range accessible to chloro-
phylls, and the second one, in photoprotection in high light 
conditions (Hofmann et al. 1996; Di Valentin et al. 2016). 
Peridinin is present in the peridinin–chlorophyll–protein 
(PCP) soluble molecular complex (Dorrell et al. 2019), and 
this complex is a sensitive photosynthetic apparatus that 
can be modified depending upon culture conditions, which 
results in different peridinin to chlorophyll ratios (Lan-
genbach and Melkonian 2019; Ara et al. 2020). Recently, 
Supasri et al. (2021) reported that purified peridinin extract 
has exhibited antioxidant, anti-inflammatory, and anti-cancer 
activities. Understanding these inherent effects is an initial 
and important step towards the establishment of dinoflagel-
late mass cultivation for pharmacological metabolite pro-
duction. The effects of light on PCP complex synthesis and 
its cascading effects on growth performance and cellular 
biochemical composition have not yet been fully elucidated 
and require further investigations for the successful mass 
cultivation of dinoflagellates.

Endosymbiotic dinoflagellates of the family Symbiodini-
aceae (formally known as the Symbiodinium clades) play a 
vital role in reef coral ecosystems (LaJeunesse et al. 2018; 
Eckert et al. 2020; Müller et al. 2021). Oxygenic photosyn-
thesis performed by endosymbiotic dinoflagellates provides 
up to 95% of the host energy requirement and provides addi-
tional metabolites that can inhibit the growth of pathogenic 
bacteria (Baker 2003). This symbiotic relationship is com-
plex, delicate, and susceptible, particularly in regard to pro-
jected changes in the marine environment, such as ocean 
acidification (Brading et al. 2011), temperature rise (Davies 
et al. 2018), availability of nutrients (Li et al. 2021), among 
other consequences (Ceh et al. 2013; Bernasconi et al. 2019). 
Due to the increased frequency of coral bleaching events, 
research efforts are being made to understand the under-
lying causes of that phenomenon, and to restore degraded 
coralline ecosystems (LaJeunesse et  al. 2018; Oliveira 
et al. 2020). Symbiodiniaceae taxa are a source of several 
biomolecules, such as symbiospirols/super–carbon–chain 
compounds (SCCs), carotenoids, and eicosapentaenoic and 
docosahexaenoic acids (EPA and DHA, respectively) with 
ample biotechnological applications due to their biological 
properties and potential use as a therapeutic agent against 
human diseases (Kita et al. 2005; Tsunematsu et al. 2009; 
Beedessee et al. 2019).

Changing environmental conditions can affect the bio-
synthesis of fatty acids, pigments, and other metabolites 
in microalgae (Oliveira et al. 2021b). Light is a mandatory 
requirement for photoautotrophic microalgae to perform 
oxygenic photosynthesis, but quality (color and source) and 

intensity (irradiance) can play secondary roles, affecting the 
biochemical composition of microalgae (Singh and Singh 
2015; Lehmuskero et al. 2018). New technologies such as 
light-emitting diodes (LEDs) have been applied in the culti-
vation of microalgae with a general long-term reduction of 
associated economic costs (Teo et al. 2014; Ma et al. 2018; 
Molina-Miras et al. 2018; Jung et al. 2019). The use of LED 
lamps, despite having a more expensive installation cost, 
has a lower environmental impact than conventional lighting 
and emits less heat (Molina–Miras et al. 2018). Thus, the 
application of LED lamps for the culture of heat-sensitive 
marine dinoflagellates, like Symbiodiniaceae species, has the 
potential to improve the overall growth performance (Lan-
genbach and Melkonian 2019).

In this study, the effects of irradiance on the culturing 
of an endosymbiotic strain of Durusdinium glynnii were 
investigated considering four main goals: (1) to evaluate the 
growth, biomass, and kinetics performance as well as nutri-
ent uptake (nitrogen and phosphorus); (2) to determine the 
photosynthetic pigments in terms of chlorophyll-a (Chl-a) 
and c (Chl-c), total carotenoids, β-carotene, and peridinin; 
(3) to quantify the fatty acid content of D. glynnii, subjected 
to different irradiances; and (4) to examine the effects of 
irradiance on the production of antioxidant compounds.

Materials and methods

Microalgal strain

D. glynnii, clone BMK 211, was kindly provided by the 
Oceanographic Institute at the University of São Paulo (IO 
USP). The strain was maintained in seawater, previously 
filtered (0.45 μm) and sterilized (121 °C for 21 min), and 
enriched with f/2 medium at a salinity of 30 g  L–1. Cul-
tures were kept in a room with a controlled temperature 
(22 ± 1 °C), under continuous illuminance (150 μmol pho-
tons  m−2  s–1) and transferred to a new fresh medium every 
week.

Culture conditions

A brief methodological flowchart of the culture conditions 
and analyses carried out in the present study is presented 
in Fig. 1.

To evaluate the effects of irradiance on growth, photosyn-
thetic parameters, fatty acid profile, and antioxidant capac-
ity of D. glynnii biomass, the dinoflagellate cultures were 
acclimated under light-emitting diode lamps. All treatments 
were performed in 250-mL Erlenmeyer flasks in triplicate, 
and incubated at room temperature 22 ± 0.5 °C, bubbled with 
atmospheric air (0.05  Lair  L−1  min−1). Initially, the cultures 
were acclimated for 7 days at their respective irradiance 
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treatments, due to the lower maximum quantum yield of 
photosynthesis reported for dinoflagellates when compared 
to other microalgae groups (MacIntyre et al. 2002). After the 
acclimation period, the cultures were diluted to standardize 
the cell concentration to a value of 50 ×  103 cells  mL–1.

Experimental set‑up

Firstly, a photosynthesis–irradiance (PE) curve was gener-
ated using irradiances varying from 0 to 1200 μmol photons 
 m−2  s−1, provided by 36 W LED panels, to determine the 
light-limited and light-saturated range. The photoinhibition 
model of Platt et al. (1980) was applied to fit the experimen-
tal data, based on Eqs. (1) and (2):

(1)P
B = P

B
s

(

1 − exp

[

−
�BE

PB
s

])

exp[−
�BE

PB
s

]

(2)P
B
m
= P

B
s

(

�B

[

�B + �B
]

)(

�B
[

�B + �B
]

)�∕�

where PB (mg C mg Chl-a −1  h−1) is the photosynthetic rate 
at photosynthetically active radiation (PAR) I normalized 
to Chl-a, PB

s
 (mg C mg Chl-a−1  h−1) is the maximum pho-

tosynthetic rate in the absence of photoinhibition, and PB
m

 is 
equal to PB

s
 when βB is zero. βB [mg C mg Chl-a−1  h−1 (µmol 

photons  m−2  s−1) −1] is a parameter that describes photoinhi-
bition, αB [mg C mg Chl-a−1  h−1 (µmol photons  m−2  s−1)−1] 
is the initial slope of the PE curve at subsaturating irradi-
ance, E (µmol photons  m−2  s–1) is the irradiance, and a and β 
are the constants. The cellular carbon content was indirectly 
calculated using the linear relationship between cell biovol-
ume and carbon content, proposed by Menden-Deuer and 
Lessard (2000).

From the PE curve (Supplemental Fig. S1), the optimum 
irradiance for D. glynnii was assessed, and ranged from 
117 μmol photons  m−2  s–1 ( Ek ) to 800 μmol photons  m−2  s–1. 
Although it is not possible to state that above 800 μmol 
photons  m−2   s–1 there was photoinhibition, the previous 
test on the PE curve indicates that in the irradiance close 
to 800 μmol photons  m−2  s–1 there was excessive light, and 
therefore, it was estimated to be the optimum photosynthesis 
zone. Based on this previous test, we hypothesized that five 
different irradiances, i.e., 100, 300, 400, 600, and 800 μmol 

Fig. 1  Flow diagram for the cul-
tivation of marine Durusdinium 
glynnii under different irradi-
ance and subsequent analyses of 
the biomass and supernatant
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photons  m−2  s–1, are the suitable irradiance conditions to 
conduct a robust photoacclimation study. These levels were 
adjusted using a quantameter and the distance of the cultures 
from the light source.

Biological, chemical, and biochemical analyses

Samples were taken for growth analyses on days 0, 1, 2, 3, 
6, 9, 12, 15, 18, and 21 of each independent replicate from 
the different irradiance conditions. Samples taken from lag, 
exponential, and stationary phases were collected to deter-
mine nutrient concentrations (nitrogen and phosphorus) and 
cellular pigments (chlorophylls and carotenoids).

Growth and kinetics evaluation

To quantify D. glynnii growth, cell concentration and bio-
mass, in dry weight, were analyzed. Biomass (mg  L−1) was 
estimated by the gravimetric method using 0.45-μm glass 
fiber microfilters (APHA 2005). Cell concentration (cells 
 mL−1) and cell biovolume (µm3 normalized for ng  cell−1) of 
1.5-mL samples were analyzed using a FlowCAM (Model 
C71 Syringe Pump, Fluid Imaging Technologies Inc., Scar-
borough, USA) equipped with a FC50 Flow Cell.

Cultures of D. glynnii exhibited asymmetric growth 
curves as reported for dinoflagellates. Thus, an asymmetric 
logistic equation was used for fitting the cell concentration 
(N(t)) vs. time (t) data in order to accurately determine the 
specific growth rate (µ,  day−1), according to Eqs. (3) and 
(4), respectively:

where a, b, c, and d are constants (Molina-Miras et al. 2018).

Nutrient uptake

Total nitrogen (N − NO
3
) was determined through the per-

sulfate digestion method on a Hach spectrophotometer using 
Reagent NitraVer (Hach ®, Loveland, USA) kits following 
standard protocols. Phosphorus (P − PO3−

4
) concentration 

was determined using the classical method of ascorbic acid 
(APHA 2005). The variations in nitrogen and phosphorus 
throughout the growth phases were used to calculate nitro-
gen uptake rate (NUR) and phosphorus uptake rate (PUR) 
during an interval time (∆t).
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Pigment analysis

Samples from day 3 (lag phase), day 15 (exponential phase), 
and day 21 (stationary phase) of the experiment were taken 
to analyze intracellular pigments. After centrifuging 15 mL of 
algal culture for 10 min at 2000 rpm, the remained biomass was 
subjected to pigment extraction using acetone 90% (Strickland 
and Parsons 1972). Chl-a and Chl-c (c1 + c2) contents were cal-
culated according to Jeffrey and Humphrey (1975), while carot-
enoid content (i.e., total carotenoids, β-carotene, and peridinin) 
were analyzed following the methods proposed by Carreto and 
Catoggio (1977) and Prézelin (1976). Values for all pigment 
concentrations were expressed as pg  cell–1.

Lipid extraction and fatty acid analysis

After acid digestion with 4 N HCl, intracellular lipids of 
D. glynnii were extracted by the Soxhlet method (963.15) 
with petroleum ether for 6 h, followed by concentration in 
a rotary evaporator. The samples were dried in an oven and 
subsequently weighed (AOAC 2005).

The fatty acid compositions of the microalgal lipid content 
were determined after the conversion of fatty acids to their 
corresponding methyl esters using the method of O’Fallon 
et al. (2007). The analysis of fatty acid methyl esters (FAME) 
was determined on a gas chromatograph (model GC-2014, 
Shimadzu, Kyoto, Japan), equipped with split-injection port, 
flame-ionization detector, and 105-m-long Restek capillary 
column (ID = 0.25 mm) coated with 0.25 μm of 10% cyano-
propylphenyl and 90% biscyanopropylsiloxane. The tempera-
tures of the injector and detector were both 260 °C. The oven 
temperature was initially set at 140 °C for 5 min, and then pro-
grammed to increase at 2.5 °C  min−1. The qualitative fatty acid 
composition was determined by comparing the peak retention 
times with those for respective fatty acid standards (Sigma, St. 
Louis, USA). The quantitative composition was determined 
by area normalization and expressed as a mass percent. The 
Class-GC10 software (https:// www. shima dzu. com/ an/ produ 
cts/ gas- chrom atogr aphy/ gc- softw are/) was used to acquire and 
process the gas chromatograph data.

Antioxidant activity

Extracts of D. glynnii were obtained using 0.1 g of dried 
biomass resuspended and homogenized in 5 mL of 90% 
(v/v) dimethyl sulfoxide. Cells were incubated for 30 min 
in an ultrasonic bath (40 kHz) followed by homogeniza-
tion for 2 h. Afterwards, the mixture was centrifugated at 
1000 rpm for 10 min. The supernatant was collected sub-
jected to serial dilution (20, 10, 5, 2.50, 1.25, 0.62, 0.31, and 
0.16 mg  mL−1) for posterior antioxidant assays. The anti-
oxidant activity (inhibition %) of the extracts was evaluated 
by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 
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 (ABTS+•) (Guedes et al. 2013), 2,2-diphenyl-1-picrylhy-
drazyl  (DPPH•) (Dantas et al. 2019), and phosphomolyb-
date (total antioxidant capacity, TAC) (Prazeres et al. 2019) 
methods. Trolox® and ascorbic acid were used as standards. 
The half-maximum inhibitory concentration  (IC50) of anti-
oxidant activity of each method was calculated based on 
the linear regression of the % of inhibition vs. the sample 
concentration from serial dilution.

Data processing and statistical analysis

D. glynnii grown at each irradiance were transferred to three 
independent subcultures (i.e., a culture fraction was transferred 
to a fresh growth medium at the same condition). Then, the 
three subcultures were analyzed individually, generating three 
individual datasets. Multifactor ANOVA was performed to 
compare the three datasets in terms of growth performance 
(i.e., maximum cell concentration, µmax, and biomass yield). 
Single comparisons were performed using one-way ANOVA 
(normality of the data and homogeneity of the variances were 
previously verified, by the Shapiro–Wilk and Levene tests, 
respectively), followed by Tukey’s post hoc mean comparison 
test. In addition, non-linear regressions were calculated to plot 
different growth curves, as well as to study the photoacclima-
tion of D. glynnii cultures subjected to different irradiances. 
For all analyses, a level of significance of 5% was adopted. All 
the analyses were performed using RStudio software (Version 
3.1.1; https:// www. rstud io. com/).

Results

The effect of irradiance on the growth kinetics

In this study, a strain of D. glynnii grew under saturating 
irradiances varying from 100 to 800 μmol photons  m−2  s–1. 

The data described herein suggest that this species had a 
better growth performance under moderate–light condi-
tions (i.e., 300 and 400 μmol photons  m−2  s–1), but can be 
also high-light-tolerant (Fig. 2a; Table 1). The PB

m
 ranged 

from 8.24 to 52.7 mg C mg Chl-a−1  h−1 at 100 and 800 μmol 
photons  m−2   s−1, respectively. High cell concentration 
(702.5 ± 20 ×  103 cells  mL−1), µmax (0.49 ±  day−1), and 
NUR (40.4 ± 4.2 µM N  day−1) were found at 300 µmol pho-
tons  m−2  s−1. On the other hand, no significant difference 
(p > 0.05) was observed for PUR, with the value being around 
1.2 µM P  day−1. The maximum biomass yield of 35.6 and 
24.4 mg  L−1  day−1 was obtained at a moderate irradiance, 
i.e., 300 and 400 μmol photons  m−2  s−1, respectively. When 
D. glynnii was cultured in low to moderate irradiance (i.e., 
100 to 400 μmol photons  m−2  s−1), cell weight was close to 
1 ng, while at high irradiance (i.e., 600 and 800 μmol photons 
 m−2  s−1), cell weight was halved (0.61–0.49 ng, respectively) 
than that observed under low irradiance condition. The pho-
toacclimation model in terms of µmax (Fig. 2b) was signifi-
cant (p < 0.05; r2 = 0.79) and confirmed the optimal range of 
photosynthesis optimum photosynthesis zone found in the PE 
curve (Supplemental Fig. S1).

The effect of irradiance on the photophysiological 
status

Chl-a, total carotenoids, β-carotene, and peridinin contents 
in D. glynnii cultures were significantly different (p < 0.05) 
between irradiance treatments (Table 2), with an extent and 
oscillatory pigment content observed. Total carotenoids 
had high oscillation (range 1.65 to 10.14 pg  cell−1), being 
composed mainly of peridinin (range 1.03 to 8.69 pg  cell−1) 
and β-carotene (range 0.55 to 3.25 pg  cell−1). Chl-a contents 
(range 0.76 to 4.28 pg  cell−1) were significantly (p < 0.05) 
higher than Chl-c levels (range 0.61 to 1.39 pg  cell−1). 
Briefly, higher contents of Chl-a were obtained in D. glynnii 

Fig. 2  Effect of irradiance on the maximum specific growth rates (a) 
and growth curves (b) of Durusdinium glynnii cultures subjected to 
different irradiances. Points are averages and vertical bars represent 
standard deviation of each subcultivation. Values denoted by a differ-
ent lowercase letter at each point differ significantly (p < 0.05). The 

line represents the fit of the model to the experimental data. The best-
fit values of k, μmax, and determination coefficient are displayed. filled 
diamond 100, filled circle 300, filled square 400, filled triangle 600, 
and filled inverted triangle 800 µmol photons  m−2 s.−1
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cultures subjected to lower irradiances (100 and 300 µmol 
photons  m−2  s−1), while no significant differences were found 
for Chl-c (p > 0.05). Maximum total carotenoids, peridinin, 
and β-carotene contents were majorly found when subjecting 
the D. glynnii culture to 600 µmol photons  m−2  s−1.

The ratios of Chl-a/Chl-c (Fig. 3a), total carotenoids/Chl-a 
(Fig. 3b), peridinin/Chl-a (Fig. 3c), and peridinin/total carote-
noids (Fig. 3d) to assess the light-harvesting complex efficiency 
were calculated. The ratio of Chl-a/Chl-c decreased with increas-
ing irradiance, while the ratios of total carotenoids/Chl-a and 
peridinin/Chl-a increased. In contrast, the ratio peridinin/total 
carotenoids remained stable regardless of irradiance, with an 
average peridinin content of 65.42 ± 0.20% of the total carotenoid 
content. For low irradiances, i.e., 100, 300, and 400 µmol photons 
 m−2  s−1, the mean ratio of peridinin/Chl-a was significantly lower 
(0.63 ± 0.23) than for high irradiance, i.e., 600 and 800 µmol pho-
tons  m−2  s−1 (3.42 ± 2.66) (p < 0.01).

The effect of irradiance on lipid content and fatty 
acid composition

The lipid content was significantly higher (p < 0.05) in 
D. glynnii cells grown at irradiance ranging from 100 to 
400 µmol photons  m−2  s−1, compared to the high irradi-
ance (Table 3). The FAME composition of D. glynnii was 
also significantly different (p < 0.05) between the irradi-
ances. Expressed as the percentage of the total FAMEs in 
D. glynnii biomass, the main fatty acid classes were satu-
rated fatty acids (SFAs, 42.0–62.4%), followed by monoun-
saturated fatty acids (MUFAs, 20.6–30.2), and polyunsatu-
rated ω-3 fatty acids (PUFA-ω3, 3.2–11.4%) and ω-6 fatty 
acids (1.57–3.38%). The overall predominant fatty acids 
were palmitic acid  (C16:0; 35.5–49.4%), oleic acid  (C18:1, 
11.0–16.5%), and palmitoleic acid  (C16:1, 9.1–13.2%) and 
docosahexaenoic acid (C22:6ω3, DHA, 2.8–11.4%), in 

which the highest DHA concentration was detected for bio-
mass grown at 300 µmol photons  m−2  s−1 irradiance.

Table 1  Growth kinetics of Durusdinium glynnii cultures under different irradiances

µmax maximum specific growth rate; PB

m
 light-saturated maximum rate; NUR nitrogen uptake rate; PUR phosphorus uptake rate

Data represents the mean ± standard deviation of three independent subcultivations for each condition. Different lowercase letters on the same 
line indicate a significant difference by Tukey’s post hoc test (p < 0.05)

Parameter Irradiance (µmol photons m−2 s−1) p–value

100 300 400 600 800

Maximum cells concentration 
(×  103 cells  mL−1)

246.7 ± 13.8c 702.5 ± 20.0a 476.3 ± 59.7b 400.3 ± 29.5b 258.8 ± 16.6c  < 0.01

µmax  (day−1) 0.31 ± 0.01c 0.49 ± 0.00a 0.43 ± 0.05b 0.42 ± 0.02b 0.24 ± 0.02d  < 0.01
Biomass yield (mg  L−1  day−1) 12.1 ± 1.9 c 35.56 ± 16.29a 24.44 ± 5.92ab 11.11 ± 7.40c 8.89 ± 2.96 cd  < 0.01
Cell weight (ng) 1.05 ± 0.12a 1.04 ± 0.19a 0.90 ± 0.32a 0.49 ± 0.24b 0.61 ± 0.09b  < 0.01
P
B

m
(mg C mg Chl-a–1  h–1) 8.24 ± 0.98a 21.73 ± 6.02b 24.87 ± 9.25b 50.04 ± 5.51c 52.74 ± 7.24c  < 0.01

NUR (µM N  day−1) 21.3 ± 3.3c 40.4 ± 4.2a 32.7 ± 3.1ab 31.5 ± 4.2ab 24.0 ± 2.4bc  < 0.01
PUR (µM P·day−1) 0.9 ± 0.5 1.8 ± 0.7 1.4 ± 0.8 1.1 ± 0.7 1.0 ± 0.5 0.47

Table 2  Variations in photosynthetic pigments of Durusdinium glyn-
nii cultures under different irradiances

Different letters on the same line indicate a significant difference by 
Tukey’s post hoc test (p < 0.05)

Irradiance (µmol photons m−2 s−1)

100 300 400 600 800

Chlorophyll-a (pg  cell−1)
Mean 4.82a 4.17a 2.77b 1.26c 0.76d

SD 1.13 0.82 0.54 0.85 0.33
Max 6.00 5.23 3.39 2.28 1.15
Min 2.60 3.53 2.34 0.45 0.38
Chlorophyll-c (pg  cell−1)
Mean 0.96 1.10 1.39 0.97 0.61
SD 0.70 1.27 0.68 0.71 0.23
Max 1.98 3.11 2.46 1.77 0.87
Min 0.44 0.21 0.55 0.30 0.33
Total carotenoids (pg  cell−1)
Mean 4.00a 3.20a 3.26a 10.14a 1.65ab

SD 1.88 2.19 0.86 3.04 1.21
Max 6.08 6.11 4.08 13.91 2.88
Min 2.06 1.26 2.03 6.98 0.44
β-Carotene (pg  cell−1)
Mean 1.11b 1.02b 1.06b 3.25a 0.55b

SD 0.59 0.71 0.40 1.17 0.40
Max 2.02 2.04 1.47 4.66 0.96
Min 0.63 0.42 0.68 2.12 0.14
Peridinin (pg  cell−1)
Mean 2.49b 1.91b 1.98b 8.69a 1.03b

SD 1.17 1.29 0.75 2.17 0.76
Max 3.78 3.43 2.75 8.69 1.79
Min 1.29 0.78 1.27 2.12 0.27
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Fig. 3  The effects of irradiance 
on the ratios of chlorophyll-a to 
chlorophyll-c (a), chlorophyll-
a to total carotenoids (b), 
chlorophyll-a to peridinin 
(c), and total carotenoids to 
peridinin (d) in cultures of 
Durusdinium glynnii. Points are 
means of each subcultivation. 
Red pointed lines represent 95% 
of confidence interval. Chl-a – 
chlorophyll-a; Chl-c – chloro-
phyll-c; TC – total carotenoids; 
and Per – peridinin

Table 3  Lipid content (%) and 
fatty acid composition (% of 
total fatty acids content) of 
Durusdinium glynnii cultured 
under different irradiances

SFA saturated fatty acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid
SFAs not shown in the table: pentadecanoic acid C15:0, behenic acid C22:0
MUFAs not show in the table: margaroleic acid C17:1, erucic acid C22:1
Different letters on the same line indicate a significant difference by Tukey’s post hoc test (p < 0.05)

FAMEs (%) Irradiance (µmol photons  m−2  s−1)

100 300 400 600 800

C12:0 1.76 ± 0.3a 1.62 ± 0.2a 1.18 ± 0.2b 0.40 ± 0.1c 0.95 ± 0.1b

C14:0 7.49 ± 0.8a 6.20 ± 0.6ab 7.69 ± 0.9a 1.44 ± 0.3c 6.32 ± 0.5ab

C16:0 42.78 ± 1.3b 35.50 ± 1.1c 49.38 ± 1.5a 37.78 ± 1.2c 49.55 ± 1.3a

C18:0 1.20 ± 0.3 1.01 ± 0.1 1.77 ± 0.3 1.65 ± 0.3 1.96 ± 0.3
C21:0 3.80 ± 0.2b 4.93 ± 0.3a 0.77 ± 0.2c 0.25 ± 0.1d 0.98 ± 0.1c

Other SFA 0.61 ± 0.2 0.57 ± 0.1 1.62 ± 0.1 0.53 ± 0.1 0.23 ± 0.1
Ʃ SFA 57.64 ± 1.0c 49.83 ± 1.2c 62.41 ± 1.1a 42.05 ± 1.0d 60.00 ± 1.0ab

C15:1 0.35 ± 0.1 0.17 ± 0.1 0.31 ± 0.1 0.20 ± 0.1 0.23 ± 0.1
C16:1 12.18 ± 0.6a 10.84 ± 0.5b 11.67 ± 0.9ab 13.16 ± 0.6a 9.06 ± 0.8b

C18:1 14.17 ± 0.7a 13.30 ± 0.6a 15.66 ± 1.0a 16.53 ± 0.8a 11.00 ± 0.9b

Other MUFA 0.45 ± 0.1 0.60 ± 0.1 0.96 ± 0.1 0.30 ± 0.1 0.32 ± 0.1
Ʃ MUFA 27.15 ± 1.1b 24.91 ± 1.3b 28.60 ± 0.5ab 30.19 ± 0.7a 20.61 ± 0.6c

C18:3 ω3 (ALA) 0.31 ± 0.1 0.27 ± 0.1 0.36 ± 0.1 0.24 ± 0.1 0.31 ± 0.1
C22:6 ω3 (DHA) 5.71 ± 0.6b 11.38 ± 0.6a 2.85 ± 0.3c 7.18 ± 0.8b 6.66 ± 0.6b

Ʃ PUFA-ω3 6.02 ± 0.7bc 11.65 ± 0.4a 3.21 ± 0.2d 7.42 ± 0.6b 6.97 ± 0.4b

C18:2 ω6 (LA) 0.85 ± 0.1a 0.88 ± 0.1a 0.55 ± 0.1b 0.20 ± 0.1c 0.50 ± 0.1b

C18:3 ω6 (GLA) 1.07 ± 0.2a 1.12 ± 0.2a 0.74 ± 0.2ab 0.51 ± 0.1b 0.80 ± 0.1a

C20:4 ω6 (AA) 0.61 ± 0.3b 1.38 ± 0.3a 0.28 ± 0.3bc 1.02 ± 0.2a 1.50 ± 0.2a

Ʃ PUFA-ω6 2.53 ± 0.2b 3.38 ± 0.2a 1.57 ± 0.3c 1.73 ± 0.2c 2.80 ± 0.2b

ω3/ω6 2.27 3.44 2.04 4.28 2.48
Total lipid 16.63 ± 1.0a 18.35 ± 1.2a 18.04 ± 1.3a 10.70 ± 0.8b 11.17 ± 0.9b
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The effect of irradiance on antioxidant production

The  ABTS●+,  DPPH●, and TAC radical scavenging assays 
were used to assess the antioxidant activity of extracts from 
D. glynnii biomass cultured under different irradiances 
(Fig. 4) in terms of percentage of inhibition (Fig. 4a) and 
 IC50 (mg  mL−1) (Fig. 4b). In the present study, the anti-
oxidant activities were positively associated with SFA 
(r2 = 0.76) and negatively associated with PUFA (r2 = –0.61) 
contents (Fig. 4c).

Discussion

Growth performance

Photoautotrophic cultivation of marine dinoflagellates at 
pilot and large scale is restrained by a number of prob-
lems related to low growth, generally related to contami-
nation and sensitivity to shear and heat stresses (Camacho 
et al. 2011; Langenbach and Melkonian 2019). Recently, 
a Symbiodinium microadriaticum strain was successfully 
cultured in twin-layer porous substrate photobioreactors 
(Tsirigoti et al. 2020). The authors remarkably reported 

5.21 g  m−2  day−1 biomass productivity at 200 μmol pho-
tons  m−2   s–1 provided by fluorescent lamps. However, 
these photobioreactors used for the scale-up process are 
hampered by high-cost issues (Langenbach and Melkonian 
2019). For this reason, raceway ponds and bubble col-
umn photobioreactors have been explored for the scale-up 
process of dinoflagellate cultivation (Molina-Miras et al. 
2018, 2020; Lim et al. 2020).

Photoacclimation of D. glynnii cultures, in terms of µmax, 
showed that at 100 μmol photons  m−2  s–1 irradiance there 
was a reduction in the specific growth rate of the cells due 
to the low availability of photon molecules (photolimita-
tion). On the other hand, at 800 μmol photons  m−2  s–1 or 
higher irradiances, algal cells could not properly dissipate 
the excessive light energy, resulting from a high number of 
photon molecules which negatively affected culture growth 
(photoinhibition).

Higher growth performance (cell concentration, µmax, and 
biomass yield) were reported at 300 and 400 μmol photons 
 m−2  s–1 irradiances. For example, the higher values for growth 
parameters are consistent with previous studies of other dino-
flagellate species, such as Akashiwo sanguinea, Prorocentrum 
micans, and Scrippsiella trochoidea (Islabão et al. 2016), and 
Karenia brevis (Tilney et al. 2019), but are lower than those 
reported for other microalgae group, such as marine diatoms 

Fig. 4  Antioxidant activity (a), 50% inhibition of free-radical scav-
enging (b), and Pearson’s correlation coefficients between antioxidant 
activity and contents of carotenoids and fatty acids (c) of Durusdin-
ium glynnii extracts. *p < 0.05; **p < 0.01; ***p < 0.001; TAC – total 
antioxidant capacity; ABTS – 2,2′-azino-bis(3-ethylbenzothiazoline-

6-sulfonic acid); DPPH – 2,2-diphenyl-1-picrylhydrazyl; TC – total 
carotenoids; PER – peridinin; BETA – β-carotene; SFA – saturated 
fatty acids; MUFA – monounsaturated fatty acids; PUFA – polyun-
saturated fatty acids. Trolox® and ascorbic acid are positive controls
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(Laws et al. 2020; Zhou et al. 2021). Molina–Miras et al. 
(2018) reported a maximum specific growth (µmax) of around 
0.60  day−1 for marine dinoflagellate Amphidinium carterae 
growing under irradiances between 100 and 400 μmol photons 
 m−2  s−1, while Iwasaki et al. (2021) reported µmax = 1.60  day−1 
for marine diatom Chaetoceros muelleri growing under 
500 μmol photons  m−2  s−1 irradiance. Thus, it is possible 
to affirm that the PCP complex, unique in photoautotrophic 
dinoflagellates (Dorrell et al. 2019), is two to four times less 
efficient than the fucoxanthin–Chl a/c complex (FCP), unique 
in diatoms. Besides the light-harvesting role of PCP in pho-
toautotrophic dinoflagellates, peridinin is suggested to confer 
a secondary role to quench harmful photo-oxidizing singlet 
oxygen (1O2) that arises as an unwanted byproduct during pho-
tosynthesis (Alexandre et al. 2007). This can support the fact 
that there was no photo-oxidation in D. glynnii cells even when 
it was subjected to relatively high irradiance for a long period 
of cultivation time.

Some studies have reported that short photoperiods were 
favorable for achieving high µmax (Kitaya et al. 2008; Wang 
et al. 2019; Kilcoyne et al. 2019). For example, Wang et al. 
(2019) reported that a small strain of Alexandrium minu-
tum grew faster under shorter photoperiods (μ = 1.01  day−1 
at 8:16 light:dark), while a larger strain of Alexandrium 
catenella grew faster under longer photoperiod at low light 
(μ = 0.76  day−1 at 24:0 light:dark). This relationship between 
light intensity and photoperiod, may justify the lower μmax 
reported for cultures of D. glynnii under 800 μmol photons 
 m−2  s−1 irradiance. Under high irradiance (i.e., 800 μmol 
photons  m−2  s−1), short photoperiods may be more favorable 
for the growth of D. glynnii that increases the division rate of 
smaller cells and in turn accumulates high amounts of Chl-a.

Pigment accumulation

In contrast to the accumulation of secondary carotenoids 
in microalgae, light-harvesting carotenoids, such as peri-
dinin, accumulate at low light intensity with increasing 
size or number of antenna complexes (Owens et al. 1980; 
Langenbach and Melkonian 2019). However, in the present 
study, higher levels of peridinin were detected at 600 µmol 
photons  m−2  s−1, suggesting that cells tend to accumulate 
more peridinin to prevent photo-oxidation than to capture 
light energy under photolimitation. The important pho-
toprotective role under high light conditions can prevent 
the formation of 1O2, a harmful oxidizing species, from 
chlorophyll triplet states (Di Valentin et al. 2016). On the 
other hand, the lower levels of peridinin at 800 µmol pho-
tons  m−2  s−1 may be the result of a partial photo-oxidation 
of cells, due to inadequate processing of excessive light 
energy. Therefore, our findings prove that peridinin is a 
vital photoprotective carotenoid in the photosynthetic 
pathways of endosymbiont dinoflagellates.

At high irradiance conditions, the production of reac-
tive oxygen species (ROS) can oxidize some carotenoids, 
inducing for instance the biosynthesis of some volatile 
organic compounds. For example, under high irradiance, 
the production of 1O2 leads to the oxidation of β-carotene 
to the synthesis of terpenoids β-cyclocitral, β-ionone, 
and dihydroactinidiolide (Laloi and Havaux 2015; Nader 
et al. 2022). Thus, it is more likely that the lower levels 
of β-carotene found in cells grown at 800 μmol photons 
 m−2  s−1 were a result of the oxidation of this carotenoid 
in detriment to the synthesis of ROS cascade compounds.

Photosynthetic pigments are usually investigated to 
express the changes in photosynthesis efficiency under 
light stress conditions (Song and Pei 2018). Changes in 
photosynthesis are usually reflected in photosynthetic 
pigment contents (George et al. 2014; Coulombier et al. 
2020). These changes may occur in response to nutrient 
concentration, temperature, and light. Regarding the ratios 
of Chl-a/Chl-c, a high ratio occurs in response to a reduc-
tion in light-harvesting related to the rate of photosystem 
II (PS-II) photochemistry reaction (Larkum et al. 1994; 
Song and Pei 2018). This reduction in light harvesting may 
be associated with a possible light limitation at 100 µmol 
photons  m−2  s−1 irradiances, where the higher ratios were 
found. Similarly, an increase in the ratio of total carot-
enoids/Chl-a resulted in a reduction in the light-harvesting 
complex and PS-II activity. Thus, a peak in total carot-
enoids/Chl-a ratio at 600 µmol photons  m−2  s−1 may be 
linked to a lower photosynthetic rate, and consequently, a 
lower growth performance. On the other hand, the reduc-
tion of this ratio at 800 µmol photons  m−2  s−1 may rein-
force that probably there was a partial photo-oxidation of 
chlorophyll at this irradiance.

Shi et al. (2018) reported stable peridinin/Chl-a ratios 
(1.3–1.5) over 48-h in non-photo-acclimated cultures of 
the marine dinoflagellate Prorocentrum donghaiense with 
irradiance ranging from 100 to 600 µmol photons  m−2  s−1. 
Similarly, peridinin/Chl-a ratios of 0.4 and 0.8 for Hetero-
capsa sp. and Prorocentrum micans have been reported 
under different culture conditions (Latasa and Berdalet 
1994; Schlüter et al. 2000). In the present study, the ratios 
of peridinin/Chl-a varied from 0.44 to 5.67 pg  cell−1 at 300 
and 600 µmol photons  m−2  s−1, respectively. These differ-
ences can be attributed to the long-term exposure to these 
irradiances, both to the 7 days of acclimation and to the three 
consecutive subcultivations, resulting in up to 70 days of 
exposure at the last sampling.

Fatty acid composition

The fatty acid profiles obtained in the present study are in 
accordance with those previously reported for Symbiod-
iniaceae taxa grown photoautotrophically (Kneeland et al. 
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2013; Mies et al. 2017). The variations in the D. glynnii 
fatty acid profile in relation to the different tested irradi-
ance followed a general pattern that is well established in 
the microalgae culture found in the literature. For example, 
Remmers et al. (2017) and Conceição et al. (2020) reported 
a reduction of DHA level in the fatty acid fraction in the dia-
tom Phaeodactylum tricornutum cultured in high irradiance. 
In the same way, at low growth rates, SFA and MUFA accu-
mulation occurs due to the cellular accumulation of excess 
carbon during photosynthesis (Li et al. 2014).

Although the fatty acid profile of D. glynnii indicates 
good characteristics for biodiesel production, such as syn-
thesis of SFA content and less than 12% of C18:3 (Oliveira 
et al. 2021a), it is economically unfeasible due to the low 
growth rate inherent of this microalga. On contrary, a high 
content of long-chain fatty acids (LCFA, i.e., > 12C) was 
detected in the D. glynnii fatty acid profile, regardless of 
their unsaturation degree. The LCFA acts in a number of 
intracellular signaling and metabolic pathways related to 
the pathogenesis of vasoproliferative and neurodegenera-
tive disorders in human cells. Dietary supplementation of 
PUFA-ω3, mainly DHA and EPA, is an important agent in 
retinal function, and neuroprotection in humans (Zárate et al. 
2017; Djuricic and Calder 2021).

The well-known LCFA such as DHA and EPA have 
attracted much attention due to a possible association with 
reduced risks of cancer, obesity, diabetes, and certain car-
diovascular disease in human metabolism (Merendino et al. 
2013; Arnoldussen and Kiliaan 2014; Kris-Etherton et al. 
2019). The main source of these LC-PUFAs is fish oil, even 
if traits like odor or off-flavors are found in this oil as well 
as some health risks associated with contaminated fish con-
sumption, notably caused by environmental pollutants, like 
toxins, biphenyls, and mercury, are considered undesirable 
by many consumers. The production of LC-PUFAs from 
marine microorganisms is already an industrial reality (mov-
ing annually about $200 million), where these compounds 
come from heterotrophic microorganism production (Kho-
zin-Goldberg et al. 2011). However, the economic viability 
of photoautotrophic microalgae cultures for LC-PUFA pro-
duction still requires substantial advances in photobiology, 
and the development of a robust and feasible biorefinery 
model is required. Taken together, the fatty acid profile veri-
fied in the D. glynnii cells exposed to different irradiances 
has demonstrated its potential application for LC-PUFA 
production.

Antioxidants

The industrial demand for biobased antioxidants is con-
stantly increasing over the years. For example, the food and 
pharmaceutical industries use antioxidants to prevent skin 
damage caused by oxidative stress and by UV-irradiance, 

respectively (Conde et al. 2021). Generally, PUFAs are 
directly associated with antioxidant activity for freshwater 
and marine microalgae (Conde et al. 2021). But not only 
PUFAs confer antioxidant activity in microalgal biomass, 
carotenoids such as astaxanthin and lutein and β-carotene 
are also recognized for strong antioxidant activity (Young 
and Lowe 2018; Pérez-gálvez et al. 2020).

In a study conducted by Supasri et al. (2021), a purified 
extract of peridinin exhibited scavenging of up to 75% of free 
radicals at 72 µM by  ABTS●+ method. In the present study, 
a lower percentage of free-radical scavenging was observed 
using the same method, due to the possible presence of 
other compounds in the extract that may reduce the antioxi-
dant capacity. Moreover, light-harvesting carotenoids, for 
instance fucoxanthin and peridinin, usually contribute to the 
high antioxidant potential under anoxic conditions, whereas 
photoprotective carotenoids (i.e., astaxanthin, β-carotene, 
lutein, etc.) have a high performance in scavenging reactive 
radicals (Nomura et al. 1997; Supasri et al. 2021). Phenolic 
compounds and flavonoids generally have a higher relation-
ship with antioxidant activities in the  ABTS●+ and  DPPH● 
methods. Furthermore, these compounds may have a higher 
and positive relationship with  ABTS●+ and  DPPH● meth-
ods in terms of antioxidant activities (Dantas et al. 2019; 
Haoujar et al. 2019).

Some bottlenecks in the successful cultivation of marine 
dinoflagellates have caused the number of published studies 
on the biological activities of peridinin, and other secondary 
metabolites, to be substantially lower than bioactive com-
pounds from green algae and diatoms, for example. How-
ever, in recent years, there have seen an advanced knowledge 
of Symbiodinium voratum nutrient demand (Tsirigoti et al. 
2020), long-term cultivation of A. carterae in an indoor-
LED-lighted raceway photobioreactor (Molina-Miras et al. 
2018), and the investigation and effects of light irradiance on 
carotenoid and fatty acid production linked with antioxidant 
compounds. The development of massive cultures of marine 
dinoflagellates for the synthesis of valuable compounds with 
biological activity suggests the importance of investigating 
this under-explored algae group for potential use in the phar-
maceutical industry, opening up new frontiers in microalgal 
biotechnology.

In conclusion, irradiance is a key factor in the growth 
of D. glynnii as well as for the synthesis of carotenoids, 
LC-PUFA, and antioxidant molecules. Our results show 
that moderate irradiance (300 μmol photons  m−2  s−1) is the 
best option for maximum biomass productivity. Peridinin 
and β-carotene are best obtained in D. glynnii when cultured 
under 600 μmol photons  m−2  s−1, while fatty acid composi-
tion varied greatly between irradiances. In sum, the marine 
dinoflagellate D. glynnii must be grown at low light irradi-
ance to produce high amount of cells, followed by high-light 
stress to induce the synthesis of peridinin.
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4.2. Article 5: New insights on the role of nitrogen in the resistance to stressors in an 

endosymbiotic dinoflagellate 
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Abstract 

Endosymbiotic dinoflagellates provide the nutritional basis for marine invertebrates, 

especially reef–building corals. These dinoflagellates are very sensitive to environmental 

changes, and understanding the factors that can increase the resistance of the symbionts 

is crucial for the elucidation of the mechanisms involved with the coral bleaching. Here, 

we demonstrate how the endosymbiotic dinoflagellate Durusdinium glynnii is affected by 

the concentration (1760 and 440 µM) and source (sodium nitrate and urea) of nitrogen 

after light and thermal stressors. The effectiveness in the use of the two nitrogen forms 

was proven by the nitrogen isotopic signature. Overall, high nitrogen concentrations, 

regardless of source, increased D. glynnii growth and chlorophyll–a and peridinin levels. 

During the pre–stress period, the use of urea accelerated the growth of D. glynnii 

compared to cells grown using sodium nitrate. During the luminous stress, the high nitrate 

condition has increased the cell growth, but changes in pigments composition was not 

observed. On the other hand, during the thermal stress was observed by a steep and steady 

decline in cell densities over time, except for high urea condition, where there is cellular 

division and peridinin accumulation 72 h after the thermal shock. Our findings suggest 

peridinin has a protective role during the thermal stress, and the uptake of urea by D. 

glynnii can alleviate a thermal stress, eventually preventing a coral bleaching event. 

Keywords: coral reefs, peridinin, stable isotopes, symbiosis, zooxanthellae. 
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1. Introduction 

Dinoflagellates of the family Symbiodiniaceae play a crucial role in coral reef ecological 

balance providing chemical energy (in carbohydrate form) produced by photosynthetic 

pathways, enabling calcium carbonate accretion and growth. Furthermore, these 

dinoflagellates can produce several metabolites that can improve the coral reef health, 

and this resulted in recent interest to understand these host–Symbiodiniaceae 

relationships (Jiang et al. 2014). Additionally, these dinoflagellates have attracted great 

pharmacological attention, because many of these molecules have been proving as 

potential anti–inflammatory, analgesic, vasoconstrictor, cytotoxic, and antitumor 

compounds that can inspire new drugs (Bigham Soostani et al. 2021; Assunção et al. 

2017). This has led to recent efforts to improve the cultivation techniques of these 

dinoflagellates (Sánchez-Suárez et al. 2021; Oliveira et al. 2020). 

Endosymbiotic dinoflagellates have a complex life cycle composed by two stages: 

the motile mastigote stage and the non–motile coccoid one. In natural environment, 

Symbiodiniaceae cells grow as mastigotes during the light phase, and divide in the dark 

as coccoid cells. The coccoid cells of Symbiodiniaceae are spherical with an average 

diameter of 10 µm and, in this stage, they become intracellular symbionts inside of the 

coral and other hosts (Shah et al. 2020; Figueroa et al. 2021). On the other hand, motile 

mastigote cells (sometimes referred as free–living cells) have different dimensions of the 

epicone and hypocone among species, and they can be found in different marine 

ecosystems (Wham et al. 2017). The free–living mastigote cells are essential to about 

80% of coral species that establish endosymbiotic relationships anew each generation or 

during an environmental change (e.g., salinity reduction and temperature rise) (Claar et 

al. 2020). In view this, it is clear that exploring the diversity and coral–specificity, the 
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nutritional strategies, the responses to stress of free–living Symbiodiniaceae is crucial to 

understand the functioning of coral reefs. 

Nitrogen is an essential nutrient for microalgae growth and plays a fundamental 

role in biosynthesis of protein, lipid, and carbohydrate (Su 2021). Microalgae can 

assimilate nitrogen in the form of nitrate, nitrite, urea, and ammonium, nonetheless, 

although the latter is often most efficiently assimilated, at high concentrations (approx. at 

25 µM) it may exhibit toxicity to cells (Yaakob et al. 2021). Intracellularly, the excess 

nitrogen might be stored in chemical and biochemical forms, such as free amino acids, 

proteins (especially Rubisco), and chlorophylls (Guilherme et al. 2019; Walker et al. 

2018). On the other hand, under nitrogen deplete conditions, microalgae cells chance their 

carbon storage patterns in favor of neutral lipids, generally by the degradation of 

polyunsaturated fatty acids for triacylglycerol (Rodolfi et al. 2009; Wang et al. 2019). 

Although there is a number of studies on the effects of nitrogen–replete and –deplete in 

microalgae cultivation, these studies mainly focus on lipids profile and yield of biomass 

produced, generally aiming a boosting in biofuels production (Tarazona Delgado et al. 

2021; Wei et al. 2022), and almost never to assess the physiological state of cells and their 

susceptibility to stress factors. 

Understanding nutritional strategies that can improve resistance of endosymbiont 

dinoflagellates can contribute for optimization of large–scale cultivation of the 

endosymbiotic dinoflagellates and elucidation of their susceptibility to environmental 

stress resulting in coral bleaching events. Here, we described the physiological 

mechanisms of Durusdinium glynnii cells cultured under high and low nitrogen supply, 

using sodium nitrate and urea as nitrogen source. Our approach is based on two main 

hypotheses: (1) nitrogen–replete condition increases the resistance of D. glynnii to 
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stresses and; (2) urea is more efficient than nitrate to support cell growth and to improve 

the resistance to stresses. 

 

2. Materials and methods 

2.1. Biological material 

Durusdinium glynnii was maintained in filter–sterilized seawater (salinity of 30 psu) 

enriched with f/2 medium–Si at 22 ± 1 ºC, under continuous lighting at 150 μmol photons 

m−2 s–1. Cultures were kept in exponential growth by regular transfer to fresh media to 

avoid nutrient limitation. 

 

2.2. Experimental set–up 

A methodological flowchart of the experimental set–up is presented in Fig. 1. 

Experimental acclimated cultures of D. glynnii were performed in 250 mL Erlenmeyer 

flasks, under irradiance of 300 μmol photons m−2 s–1 provided by 36 W light–emitting 

diodes panels, and bubbled with atmospheric air. In order to assess the effects of 

concentration and source of nitrogen on the light– and heat–tolerance of D. glynnii, two 

concentrations (1760 and 440 µM resulting in a N:P ratio of 28:1 and 7:1, respectively) 

of nitrogen in form of sodium nitrate (NaNO3) and urea (CH4N2O), normalized by 

nitrogen percentage in each form, were evaluated resulting in a bi–factorial (2×2) design 

with six independent replicates (n = 6) for each condition. 
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Fig. 1. Flowchart for the experimental set–up. 

 

Initially, cultures grown for 96 h and then, they were diluted to a mean cell 

concentration of 21.4 ± 2.6 × 104 cells mL–1. After dilution, the nitrogen concentration in 

each of the treatments was adjusted as close as possible to the time before dilution (after 

growth), when necessary. Then, two experimental units from each nitrogen condition 

were submitted for stress assays: (1) in the thermal stress, the cultures were transferred to 

a germination chamber with a thermostat adjusted to 30 ± 0.5 °C, under the same 

illumination regime (i.e., 300 μmol photons m−2 s–1); (2) in the light stress, the irradiance 

subjected to the cultures was increased to 600 μmol photons m−2 s–1, by adding a new 

LED panel, and adjusting using a quantameter and the distance of the cultures from the 

light source. The other cultures (control group) were maintained at the same conditions 

previously described (i.e., 22 ± 1 ºC and 300 μmol photons m−2 s–1). The stress assays 

were maintained for 96 h. Stress levels were chosen based on previous photoacclimation 
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(Oliveira et al. 2022) and thermal stress (Lin et al. 2019) studies with Symbiodiniaceae 

species. 

 

2.3. Growth analysis 

Cell concentration (c, cells mL–1) and cell type (mastigote and coccoid forms based on 

based on morphological characteristics reported in Kang et al. (2020)) were analyzed 

using a hemacytometer under an optical microscope (400 or 1,000× of magnification). 

An asymmetric logistic equation was used for fitting the cell concentration (C(t)) vs. time 

(t) data in order to accurately determine the specific growth rate (µ, day–1), before (µc) 

and after the stress (µs) according to equation elsewhere described (Oliveira et al. 2022). 

 

2.4. Photosynthetic pigments 

At the end of the stress assays, samples from each experimental unit were taken to analyze 

intracellular pigments. After centrifuging 100 mL of algal culture for 10 min at 2000 rpm, 

the remained biomass was subjected to pigment extraction using acetone 90% (Strickland 

and Parsons 1972). Chlorophylls–a (Chl–a) and c (Chl–c; c1 + c2) contents were 

calculated according to Jeffrey and Humphrey (1975), while carotenoid content (i.e., total 

carotenoids, β–carotene, and peridinin) were analyzed following the methods proposed 

by Carreto and Catoggio (1977) and Prézelin (1976). Values for all pigment 

concentrations were expressed as pg cell–1. 

 

2.5. Stable isotopes analysis 

2.5.1. Sample preparation 

At the end of the stress assays, 50 mL from each duplicate treatment were pooled together 

and vacuum filtrated (~200 mbar) onto pre–combusted (450 °C for 4 h) GF/C glass 
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microfiber filters (pore size 1.2 μm), and stored in sterile glass Petri dishes. Filters were 

oven dried at 60 ºC for 24 h and decarbonated with concentrated HCl (12 M) for 4 h in a 

desiccator (Lorrain et al. 2003). Afterwards, the filters were cut and encapsulated in high 

purity aluminum disc. 

 

2.5.2. Elemental and stable carbon isotope analysis 

Cellular particulate organic carbon (POC) content, carbon stable isotope ratio (δ13C), 

nitrogen stable isotope ratio (δ14N) the stoichiometric ratio of particulate organic carbon 

to nitrogen (C:N) were determined with an elemental analyzer (EA, EuroVector, model 

EA3000 Single) coupled to an isotopic ratio mass spectrometer (IRMS, Thermo 

Scientific, model Delva V Advantage). The temperature in the EA furnace was 

maintained at 980 °C. Helium (purity: 99.99%), was used as a carrier gas at a flow rate 

of 93 mL min−1. A pulse of 15 mL of oxygen (purity: 99.99%) was introduced into the 

reactor to facilitate combustion of the sample. The gases generated in the reactor were 

separated in a chromatographic column maintained in an isothermal oven (70 °C), and 

then transferred to the IRMS. The analysis time of a sample totaled five minutes. The 

IRMS was routinely calibrated with reference gases (CO2 and N2) traceable to an 

international isotopic standard (Vienna Pee Dee Belemnite – VPDB). A certified 

reference material (casein, Elemental Microanalysis P/N B2155) was employed for 

quality control. Analytical precision for δ13C was 0.02 ‰. Results are presented according 

to the commonly used δ–notation Eqs. (1) and (2) expressed as per mil (‰) as follow: 

δଵଷC =  ൮

ቆ
஼భయ

஼భమ൘ ቇ
ೞೌ೘೛೗೐

ቆ
஼భయ

஼భమ൘ ቇ
ೝ೐೑೐ೝ೐೙೎೐

− 1൲ × 1000 (1) 
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δଵଷN =  ൮

ቆ
ேభయ

ேభమ൘ ቇ
ೞೌ೘೛೗೐

ቆ
ேభయ

ேభమ൘ ቇ
ೝ೐೑೐ೝ೐೙೎೐

− 1൲ × 1000 (2)

3. Results

In the first 96 h of Durusdinium glynnii growth in control conditions, the high urea 

concentration accelerated cell growth (p < 0.01, n = 6), reaching 91.83 ± 16.83 × 104 cells 

mL–1 at 0.55 ± 0.05 day–1, while the other nitrogen conditions grown at nearly 0.24 day–

1. In the 96 h after cultures dilution, without environmental changes, the high nitrogen

concentration presented higher growth in comparison to the low one. During the light 

stress, in oppose to control conditions, the use of sodium nitrate showed a higher growth 

performance compared to urea, in both concentrations. In the temperature stress, a gradual 

reduction in cell concentration was observed for all nitrogen conditions, except the high 

urea concentration, resulting in negatives values of µs due to decline in cell densities (Fig. 

2a–c, Table 1). 
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Fig. 2. Growth curves (a–c) and cell type proportion (d–f) of Durusdinium glynnii 

subjected to the light (b and e) and temperature (c and f) stress. Figures (a) and (d) 

represent the control. Black arrows indicate the dilution of the culture and the start of 

stress assay. Yellow and red arrows indicate the approximate timing of nitrogen depletion 

at low and high concentrations, respectively. Points plotted in cell type figures represents 

mean value from each experimental unit during the 96 hours of stress. 
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Table 1. Response of Durusdinium glynnii cultured using sodium nitrate and urea in 

terms of growth performance, stable carbon and nitrogen isotopes, and carbon–to–

nitrogen ratio. 

Parameter 
Sodium nitrate Urea 
High Low High Low 

Control     
c (104 cells mL–1) 44.50±2.13 35.12±10.78 84.5±10.61 24.75±3.18 
µc (day–1) 0.32±0.03 0.21±0.08 0.55±0.05 0.19±0.01 
µs (day–1) 0.23±0.04 0.25±0.14 0.47±0.03 0.16±0.06 
δ13C (‰) –14.10 –14.06 –15.90 –13.85 
δ15N (‰) –29.44 –28.19 –3.03 –2.23 
C:N 5.19 5.03 4.78 4.64 
Light stress     
c (104 cells mL–1) 58.62±5.83 27.00±0.71 43.62±6.19 22.87±0.88 
µc (day–1) 0.32±0.03 0.21±0.08 0.55±0.05 0.19±0.01 
µs (day–1) 0.24±0.01 0.14±0.03 0.18±0.04 0.11±0.00 
δ13C (‰) –14.71 –16.16 –14.07 –14.02 
δ15N (‰) –28.96 –28.15 –1.90 –1.80 
C:N 5.16 5.51 4.88 4.65 
Temperature stress    
c (104 cells mL–1) 2.25±2.47 0.87±0.53 13.12±5.13 0.62±0.25 
µc (day–1) 0.32±0.03 0.21±0.08 0.55±0.05 0.19±0.01 
µs (day–1) –0.69±0.41 –0.81±0.15 –0.12±0.10 –0.56±0.01 
δ13C (‰) –16.45 –16.31 –14.52 –16.33 
δ15N (‰) –28.50 –27.95 –1.76 –0.67 
C:N 5.18 5.52 4.60 5.12 

Samples for δ13C, δ15N, and C: N were pooled for analysis, resulting in single data for 

each treatment. 

 

The cell morphotype of Durusdinium glynnii was mostly (over 80% of the total 

population) mastigote cells in the control conditions (Fig. 2d) and in the light stress (Fig. 

2e) assay. On the other hand, the percentage of mastigote cells was lower (below 80%) 

during the temperature stress (Fig. 2f), except for the use of high urea concentration – 

above 95% of the population was mastigote cells. In addition, the population in the low 

urea concentration condition at the temperature stress was composed mainly by coccoid 

cells. 
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The cellular δ13C values were relatively stable both with respect to the use of 

sodium nitrate and urea, their respective concentrations, and also when subjected to 

thermal and light stress, ranging from –16.45 to –13.85‰. For δ15N, a clear distinction 

between nitrogen sources was observed: the sodium nitrate source ranged from –29.44 to 

–27.95‰, while for urea one, ranged from –3.03 to –0.67. Furthermore, for urea source, 

lower δ15N values were reported for both stress assays compared to control conditions. 

Finally, C:N ratio of cells grown using sodium nitrate (5.27 ± 0.20) as nitrogen source 

showed higher values (p<0.05; n = 6) compared to those grown using urea (4.76 ± 0.22) 

(Table 1). 

Pigments contents in D. glynnii subjected to light and thermal stress showed 

differences compared to the control (Fig. 3). Overall, cells grown under high nitrogen 

condition had higher contents of chlorophyll–a. Cells subjected to the light stress had 

higher content of total carotenoids when grown using urea as nitrogen source at the two 

concentrations – it was also reflected in the contents of β–carotene and peridinin. In the 

thermal stress, the contents of all pigments in cells grown at high urea concentration were 

higher than other treatments. 
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Fig. 3. Pigments content and composition of Durusdinium glynnii grown using sodium 

nitrate and urea as nitrogen source under control (a), light (b), and temperature (c) stress. 

HU – high urea; LU – low urea; HN – high sodium nitrate; LN – low sodium nitrate; Chl–

a – Chlorophyll–a; Chl–c – Chlorophyll–c; TC – total carotenoids; βc – β–carotene; Per 

– Peridinin. 

 

4. Discussion 

The dataset here analyzed suggests the nitrogen overaccumulation can increase the 

tolerance of the endosymbiotic dinoflagellate Durusdinium glynnii subjected to light and 
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thermal stress. Moreover, the use of high urea concentration was the only condition that 

supported the cell growth and division of D. glynnii subjected to thermal stress. This may 

be associated with the fact that urea is more rapidly converted intracellularly into amino 

acids compared to nitrate–based compounds, as demonstrated in Figure 4. The use of 

urea as nitrogen source also has a less energetic cost during its assimilation (Su 2021). 

Fig. 4. Schematic representation of the inorganic nitrogen assimilation pathway and 

glutamate/glutamine cycle in Durusdinium glynnii. 

 

Some authors suggest that the preferred order of nitrogen utilization by eukaryote 

microalgae is ammonium > nitrate > nitrite > urea (Perez-Garcia et al. 2011; Su 2021). 

However, some recent reports (e.g., Ou et al. 2019; Huang et al. 2020) suggest that urea 

is the most preferred nitrogen source by dinoflagellates, as reported by Matantseva et al. 

(2016) that the addition of urea to the nitrate–acclimated culture of the marine 

dinoflagellate Prorocentrum minimum led to noticeable suppression of the nitrate–

nitrogen uptake. Thus, probably the preferred order of nitrogen assimilation for 

dinoflagellates is “ammonium > urea > nitrate > nitrite” or “urea > ammonium > nitrate 
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> nitrite”, depending on species (Burford 2005). For decades, the use of urea as nitrogen–

based fertilizer by farmers has pointed out as one of the main contributing to coastal 

eutrophication (Glibert et al. 2006). The escalating of using urea has associated with 

harmful dinoflagellate blooms species, due to the higher urease activity compared to other 

phytoplankton groups (Solomon and Glibert 2008; Jing et al. 2017). The findings of the 

present study corroborate this information, since D. glynnii presented high cell division 

when using urea as nitrogen source. 

Regarding the isotopic signatures, no major changes were observed in the δ13C 

values, and these values were within the range reported for D. glynnii under control 

conditions (Müller et al. 2021) and other C4–photosynthetic microalgae (Raven et al. 

2020). On the other hand, a clear difference in the δ15N signature was observed between 

the nitrogen sources, providing the effectiveness in the uptake of the different nitrogen 

source in the medium. The δ15N signatures for D. glynnii cultured using urea as nitrogen 

source were similar to those reported by Bateman and Kelly (2007) for urea fertilizers 

from different manufacturers. Similarly, Freyer and Aly (1974) reported that the isotopic 

composition of sodium nitrate is much lower than that of other sources of inorganic 

nitrogen due to residual nitrogen oxides from the nitric acid process, resulting in δ15N 

signatures close to –22 ‰. Although stable isotope analysis is routinely used in ecological 

studies of phytoplankton (e.g., Cai et al. 2019; Yang et al. 2020; Sabadel et al. 2022), it 

is rarely used to prove the effectiveness in absorption of dissolved compounds in 

microalgae cultures. Thus, this analysis can be successfully used to effectively track the 

uptake of inorganic and organic compounds by microalgae. 

Contrary to our second hypothesis, the use of sodium nitrate as nitrogen source was 

more efficient than urea in terms of growth performance of D. glynnii subject to the light 

stress. This can be associated with the fact that light can stimulates the enzymatic activity 
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of nitrate reductase and glucose–6–phosphate dehydrogenase, which may have increased 

the rate of nitrate uptake and assimilation to protein (Tischner and Hüttermann 1978; 

Wang et al. 2022). Moreover, it may also be associated to increased nitrogen 

accumulation during the 96 h before the stress. At this moment, the cells cultured with 

high urea concentration presented a faster metabolism and this resulted in an intense cell 

division in the first days of cultivation. While the cultures with nitrate may be 

accumulating nitrate during this first moment.  

The high content of peridinin in high nitrogen cultures can be linked to the fact that 

this carotenoid is associated with proteins, in form of peridinin–chlorophyll–protein 

complex, and thus, the nitrogen limitation may inhibit the peridinin biosynthesis (Di 

Valentin et al. 2016; Dorrell et al. 2019). During the thermal stress, the higher peridinin 

content in high urea condition may explain greater cellular health at this condition, while 

in the other conditions, the peridinin may have oxidized. The oxidation of intracellular 

metabolites (such as fatty acids and pigments) in Symbiodiniaceae subjected to thermal 

stress has also been previously reported. For example, Botana et al. (2022) reported an 

increase in oxy–polyunsaturated fatty acids in Breviolum minutum cells after heat sock 

(at 34 ºC). Here, we also provide evidence that peridinin may act as a protector against 

oxidative stress resulting from a temperature rise. In a previous study (Oliveira et al. 

2022) we reported that under optimal irradiance for growth D. glynnii maintained a 

peridinin to chlorophyll–a ratio of approximately 1 (at 3.5 pg cell–1), while under high–

light exposure this ratio increased to approximately 4, before the photoinhibition zone. 

Here, this ratio was close to 1, in the high nitrate condition, but at a content of 1.5 pg cell–

1. These differences can be attributed to the cell concentration, since higher number of 

cells increases the light attenuation (Pruvost et al. 2015), reducing potential photo–

oxidative stress. 
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4.1. Ecological implications 

Our findings cannot be directly applied to natural environments for the obvious 

reason that artificial nitrogen enrichment would result in an invaluable environmental 

imbalance. Furthermore, the physiological responses of non–motile coccoid cells in 

endosymbiosis may be different from free–living mastigote cells. But it is worth noting 

that the presence of free–living cells of Symbiodiniaceae in the environment represent 

important pools for coral symbiont acquisition (Claar et al. 2020). Additionally, the 

results herein presented may help for understanding the Symbiodiniaceae susceptibility 

to changing environmental conditions, particularly those linked to global warming. Thus, 

a schematic drawing was constructed to summarize the response of D. glynnii related to 

a rise temperature or an exposure to high light (Fig. 5). Overall, our findings support the 

idea that corals from nutrient–poor waters (particularly in nitrogen) are more susceptible 

to bleaching events in a situation of temperature rise. Similarly, Symbiodiniaceae cells 

when using urea tend to accumulate the carotenoid peridinin to prevent photo–oxidation 

– these results may be related to the shallow water reefs. 
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Fig. 5. Schematic illustration of the main ecological implications of high–light exposure 

and temperature rise for the endosymbiotic dinoflagellate Durusdinium glynnii in 

nitrogen–poor and –rich waters. 
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Undoubtedly, the temperature rise is one of the main stressors for endosymbiotic 

dinoflagellates. Here, we show that a well–established culture of D. glynnii gradually 

reduced its population over time after increasing temperature – except for the high urea 

condition. In the natural environment, a temperature rise may occur in combination with 

another environmental stressors, such as the presence of an emerging pollutant or a 

change in salinity, resulting in even more severe impacts (Coles and Jokiel 1978; Camp 

et al. 2016; Stien et al. 2020), and these multiple disturbances of the host–symbiont 

relationship can rapidly impact the homeostasis of reef ecosystems. Therefore, the 

synergism between various environmental stressors should be a priority issue, given the 

modern changing world. 

Several factors, such as geographic (e.g., river inputs on coastal), anthropogenic 

(e.g., industrial wastewater disposal and eutrophication), temporal (e.g., seasonality of 

inorganic fertilization of agricultural land in coastal regions) and oceanographic (e.g., 

remineralization and lateral transport of nutrients), can influence the sources and 

dynamics of nitrogen in the oceans (Zehr and Ward 2002; Howarth 2008). This causes 

seas to be diversified in terms of nitrogen sources and concentrations, resulting in 

different coral susceptibilities depending among other factors, on main sources of 

nitrogen input (Roff and Mumby 2012; Cannon et al. 2021). However, it is worth noting 

that due to the diversity of Symbiodiniaceae taxa, the behavior reported here for D. glynnii 

may not be the same for other Symbiodiniaceae species. 

 

4. Conclusions 

Our approach showed nitrogen as a key nutrient involved with resistance to light- 

and thermal-stressors for D. glynnii. The availability of reduced nitrogen form, such as 

urea, can accelerate intracellular metabolism and alleviate environmental stressors (i.e., 
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thermal stress). Additionally, our findings provide initial evidence that the carotenoid 

peridinin may have a thermal protective role for endosymbiont dinoflagellates. However, 

future interspecific and molecular investigations (assessing the regulation of correlated 

genes) still need to be conducted. 
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4.3. Article 6: A holistic approach to produce anti-Vibrio compounds using wastewater 

from shrimp culture 
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Abstract 

Aquaculture industry requires green solutions to solve several environmental challenges, 

including adequate wastewater remediation and natural drugs to treat bacterial and virus 

diseases. In this study, feasibility of the endosymbiotic dinoflagellate Durusdinium 

glynnii cultivation in aquaculture wastewater from shrimp farming in synbiotic system 

(AWW–SS) diluted in different proportions of f/2 medium (FM) was investigated. 

Interestingly, D. glynnii grew better in any AWW–SS ratio than in the control (FM). The 

better proportions of AWW–SS and FM, in terms of growth performance were: 75% 

AWW–SS: 25% FM and 50% AWW–SS: 50% FM. The removal of total nitrogen and 

total phosphorus reached 50.1 and 71.7%, respectively, from the crude AWW–SS. 

Biomass grown on AWW-–S was able to inhibit the growth of Vibrio parahaemolyticus 

(inhibition zone of 10.0 ± 1.7 mm) and V. vulnificus (inhibition zone of 11.7 ± 1.5 mm). 

The results of this study revealed that D. glynnii is a potential dinoflagellate for 

development of circularity in aquaculture industry, particularly, by producing anti–Vibrio 

compounds with quasi–zero cost. 

Keywords: aquaculture, dinoflagellate, peridinin, synbiotic. 
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Graphical abstract 
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Highlights 

 

 Mixtures of aquaculture wastewater and f/2 were used as dinoflagellate growth 

media; 

 Maximum D. glynnii growth was observed in a medium containing 50 or 75% of 

wastewater; 

 D. glynnii removed 71.7% of total phosphorus; 

 Acetonic extract from biomass grown in wastewater inhibited the growth of Vibrio 

strains; 

 Inhibition zone of V. parahaemolyticus was positively correlated with carotenoid 

peridinin.  
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1. Introduction 

Aquaculture plays a key role in achieving the sustainability development goals (SDGs) 

set out by United Nation in the 2030 Agenda, particularly in the SDGs 1 – No poverty, 2 

– Zero hunger, 3 – Google health and well–being, 8 – Decent work and economic growth, 

12 – Responsible consumption and production, 13 – Climate action, and 14 – Life below 

water (Hambrey, 2017; Stentiford et al., 2020). In recent years, fish production by 

aquaculture has surpassed fishing, and sustainable fish production can help restore 

overexploited fish stocks around the world without compromising food security (FAO, 

2022). However, new practices and actions still need to be developed and/or improved to 

solve the old problems of aquaculture, i.e., new sources of proteins and oils suitable for 

fish nutrition (Alhazzaa et al., 2019; Jones et al., 2020), suitable treatment of wastewaters 

rich in nitrogen and phosphorus (Maigual-Enriquez et al., 2019; Farzana et al., 2019), and 

use of sustainable drugs to treat diseases (Heal et al., 2021). Vibrio are Gram-negative 

pathogenic bacteria widely distributed in marine environments. These bacteria cause 

vibriosis disease that resulted in high mortalities, and are a major threat to aquaculture 

farmers worldwide (Ghosh et al., 2021). Furthermore, some Vibrio spp. showed resistance 

to some traditional antibiotics used to control vibriosis, such as cotrimoxazole, 

chloramphenicol, and streptomycin, therefore, new anti–Vibrio agents with low resistance 

risk are of great interest to aquaculture sector (Kumara et al., 2018; Ghosh et al., 2021). 

Microalgae are considered the best alternative to solve these aquaculture problems 

(Oliveira et al., 2022a). This is because they can efficiently treat wastewater, absorbing 

up to 99% of nitrogen and phosphorus sources (Guo et al., 2013; Tejido-Nuñez et al., 

2019), and producing a valuable biomass that can be rich in lipids and proteins suitable 

for fish nutrition, and other bioactive metabolites (Shah et al., 2018). This circular process 

enables to recycle waste in a holistic approach with zero or quasi–zero residue production. 
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The circular bioeconomy is based on the application of green and sustainable chemistry 

principles in order to replace fossil–based materials by biologically–based resources. The 

circularity in aquaculture has the potential to improve profitability and sustainability 

through the valorization of by–products and wastes (solids and liquids) (Regeiro et al., 

2021). Although several studies have already proved the ability of microalgae to grow in 

different types of aquaculture wastewater (e.g., Gao et al., 2016; Cardoso et al., 2020; 

Oliveira et al., 2020), few studies have been concerned with the application of this 

biomass as an aquaculture input, proving the effectiveness of a circular and holistic 

process. 

Microalgae are capable of synthesizing primary and secondary metabolites and, 

according to Lopes da Silva et al. (2019), contribute to the global bioeconomy due to their 

ability to produce marketable value–added products from liquid, gaseous, and solid 

wastes. The primary metabolites are those necessary for cell growth, i.e., protein, 

carbohydrates, and lipids, while the secondary metabolites have vital functions in 

ecological interactions and adaptive strategies (Stirk and van Staden, 2020). Particularly, 

carotenoids from microalgae have a number of biological activities, including anticancer, 

antioxidants, antifungal, and antibacterial (Koyande et al., 2019; Stirk and van Staden, 

2020). In recent years, in addition to the popular carotenoids synthesized by green 

microalgae, such as astaxanthin, lutein, and β–carotene, two other emerging carotenoids 

(i.e., fucoxanthin and peridinin) have gained prominence for their interesting biological 

activities (Lourenço-Lopes et al., 2021; Supasri et al., 2021). Peridinin is an 

apocarotenoid exclusively found in phototrophic dinoflagellates that play roles in light 

harvesting and can also protect cellular photosynthetic machinery from photo–oxidative 

damages by the scavenging free radical (Oliveira et al., 2022b). However, due to the 
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difficulties in dinoflagellates isolating and cultivation, this carotenoid has not yet been 

widely studied in terms of biological activities. 

Herein, we examined the wastewater treatment capacity from shrimp culture in 

synbiotic system by the dinoflagellate Durusdinium glynnii. Firstly, the growth and 

nutrient uptake by D. glynnii was investigated, and the biomass produced was 

characterized in terms of (i) secondary metabolites and (ii) anti–Vibrio activity. 

 

2. Materials and methods 

2.1. Shrimp production 

Pacific white shrimp Penaeus vannamei was cultured in a circular fiberglass tank (10 

m−3) under a super intensive system without water changes for 3 months. The culture was 

conducted with seawater (salinity of 35 PSU) that received inorganic fertilization with 

urea (4.5 g m−3 N), triple superphosphate (0.3 g m−3 P), and sodium silicate (0.23 g m−3 

Si). After two days, organic fertilization was begun through 12 applications of product 

for 24 h in an anaerobic phase followed by an aerobic phase (24 h). The organic fertilizer 

was composed of rice bran (20 g m−3), molasses (2 g m−3), sodium bicarbonate (4 g m−3) 

and a bacteria-based product (0.05 g m−3), containing Bacillus subtilis, B. licheniformis, 

Saccharomyces sp. and Pseudomonas sp. at a total of 5.5 to 6.5 × 107 CFU g−1. This 

synbiotic system has a final C:N ratio of 4.13. The shrimp production results were 

described elsewhere (de Andrade et al., 2021). 

 

2.2. Dinoflagellate strain and culture conditions 

Durusdinium glynnii (clone BMK 211) was obtained from Culture Collection of 

Laboratório de Produção de Alimento Vivo (Brasil). The strain was maintained in 

seawater (30 PSU), previous filtered (0.45 μm) and sterilized (121 ºC for 21 min), 
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enriched with f/2 medium without Si. Cultures were kept in a room with controlled 

temperature (22 ± 1 ºC), under continuous illuminance (150 μmol photons m−2 s–1) and 

transferred to a newly fresh medium regularly. 

The experimental cultures were grown under controlled conditions in 250–mL 

Erlenmeyer flasks, at the same temperature and under 300 μmol photons m−2 s–1 at an 

integral photoperiod. They were aerated at a rate of 0.05 vvm without CO2 addition to not 

increase production costs and to allow the application on a large–scale. 

Wastewater was submitted to solids sedimentation for 30 min and supernatant 

double filtered (1 μm). Moreover, the water chlorinated (at 50 ppm) and neutralized (25 

ppm of thiosulphate solution). The seawater used to prepare f/2 medium was submitted 

to a single filtration, and the same purification, disinfection, and sterilization procedures. 

 

2.3. Experimental design 

Four proportions of aquaculture wastewater from synbiotic system (AWW–SS) were 

evaluated: 25 (25% AWW–SS), 50 (50% AWW–SS), 75 (75% AWW–SS), and 100% 

(100% AWW–SS), the remainder, i.e., 75, 50, 25, and 0%, respectively, was completed 

with f/2 culture medium (FM). In addition to these four treatments, a positive control 

(without wastewater addition) was also conducted. All treatments and the control were 

performed with three independent replicates, and the experiment was conducted in a 

completely randomized design. 

 

2.4. Biological, chemical, and biochemical analyses 

Samples were taken at day 0, 1, 2, 3, 6, 9, 12, and 15 of each independent replicate for 

growth analyses. Samples taken from 0, 7, and 15 were collected to determine nutrients 
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uptake (nitrogen and phosphorus) and pigments (chlorophylls and carotenoids) produced 

by D. glynnii during algal growth. 

 

2.4.1. Growth evaluation 

Biomass (mg L–1) was estimated by the gravimetric method using 0.45 μm glass fiber 

microfilters (APHA, 2005). Moreover, cell concentration (c, cells mL–1) was determined 

using a Neubauer hemocytometer under an optical microscopy. The cell concentration 

was used to determine the specific growth rate (µ, day−1) in the exponential growth phase 

as described in Oliveira et al. (2022b). 

 

2.4.2. Nitrogen and phosphorus analyses 

Aliquots from biomass filtering were collected and subjected to the ammonia−N (NH4
+-

N; APHA, 2005), nitrite−N (NO₂−−N; Fries, 1971), nitrate−N (NO₃−−N; APHA, 2005), 

orthophosphate (P–PO₄3−; APHA, 2005). The removal efficiency in % was calculated 

according to Ansari et al. (2017). 

 

2.4.3. Pigments analysis 

15–mL aliquots were centrifugated at 3,000 rpm for 10 min, and remained biomass was 

subjected to pigment extraction using acetone 90% (Strickland and Parsons, 1972). For 

the photosynthetic pigments, i.e., Chlorophylls (Chlorophyll–a + c) contents were 

calculated according to Jeffrey and Humphrey (1975), while carotenoid contents (i.e., 

total carotenoids, β–carotene, and peridinin) were analyzed by following the methods 

proposed by Carreto and Catoggio (1977) and Prézelin (1976). Values for all pigment 

concentrations were normalized as mg g-1 biomass. 
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2.5 Antibacterial activity 

Vibrio strains (i.e., V. parahaemolyticus and V. vulnificus) were cultured onto thiosulfate 

citrate bile salt agar (TCBS) plates and incubated at 37 °C. The antimicrobial 

susceptibility of V. parahaemolyticus and V. vulnificus strain was determined using 

acetonic extract of D. glynnii biomass through Kirby–Bauer method according to the 

guideline of the Clinical and Laboratory Standards Institute (CLSI, 2016). A bacteria 

broth (108 CFU mL−1) was prepared, and then was distributed in sterile Petri plates 

(140 × 15 mm) using a sterile swab. Sterile blank paper discs (6 mm diameter) 

impregnated with 20 µL of extracts carried out using dried algae (10%, w v−1) were added 

onto agar plates. The disc with solvent was negative control. Plates were incubated at 37 

℃ for 24 h. A transparent ring around the paper disc revealed antibacterial activity, and 

transparent diameter was measured using a digital caliper to determine the inhibition 

zone. 

 

2.6 Economic analysis 

An economic analysis was conducted assuming only differences on the cost of culture 

medium. Culture medium costs were calculated according to the final concentration of 

each element used for production of one kilogram of dry biomass. The prices of f/2 

medium used was based on Faé Neto et al. (2018). The cost for the treatment of synbiotic 

wastewater was considered zero as the wastewater processing was similar to the seawater, 

and no further addition of reagents in this medium. 

 

2.7 Statistical analysis 

Single comparisons were performed using one–way ANOVA, followed by Tukey's post–

hoc mean comparison test (normality of the data and homogeneity of the variances were 
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previously verified, by the Shapiro–Wilk and Levene tests, respectively). In addition, 

linear and non–linear regressions were calculated to plot correlation between inhibition 

zone and peridinin content and growth curves of D. glynnii cultures subjected to different 

proportions of wastewater from shrimp culture, respectively. For all analyses, a level of 

significance of 5% was adopted. 

 

3. Results 

3.1. Growth performance 

In the present study, the endosymbiotic dinoflagellate Durusdinium glynnii can grow in 

the pure AWW–SS, and partial replacement above 25% improved the growth 

performance of D. glynnii in comparison to the control one (Fig. 1a). The onset of the 

exponential growth phase (on the 5th day) was faster for the 50– and 75%– AWW–SS. 

Cultures conducted in 25%– and 100%–AWW–SS showed a shorter exponential growth 

phase. All treatments, and the control, reached the maximum cell density on the 12th day 

of cultivation. The partial replacement (i.e., 50 or 75%–AWW–SS) of FM by AWW–SS, 

resulted in higher values of µ (0.56 ± 0.01 and 0.58 ± 0.01 day-1, respectively) of D. 

glynnii cultures. The replacement of 75% improved the Bmax (0.51 ± 0.04 g L-1) and P 

(57.0.04 ± 4.63 mg L-1 day-1), in comparison to other treatments and the control (0.33 ± 

0.03 g L-1 and 37.00 ± 3.02 mg L-1 day-1) (Fig. 1b). 

Fig. 1. Logistic growth curves (a) and growth parameters (b) of Durusdinum glynnii 
cultured in different proportions of wastewater from shrimp culture in a synbiotic system. 
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µ – specific growth rate (day-1), Bmax – maximum biomass reached (g L-1), P – daily 
biomass productivity (mg L-1 day-1). Different letters indicate significant differences (p 
<0.05) between treatments by Tukey’s post-hoc test. 
 

3.2 Nutrient uptake 

The different AWW–SS proportions evaluated in the present study resulted in 

different initial concentrations of NH4
+-N, NO₂−−N, NO₃−−N, and P–PO₄3− (Fig. 2). 

NO₃−−N was completely absorbed in the control and the 25%–AWW–SS, while for 

NO₂−−N, low or no absorption was observed. In the 50%–AWW–SS, the initial level of 

NH4
+-N was considerably higher than at the final. Finally, a high phosphorus uptake was 

observed in all treatments. 

Fig. 2. Nutrients uptake (a-d) and efficiency removal (e) by Durusdinium glynnii cultured 
in different proportions of wastewater from shrimp culture in a synbiotic system. 
Different letters indicate significant differences (p<0.05) between treatments by Tukey’s 
post-hoc test. 
 

3.3 Pigments composition 
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Overall, lower oscillation in all pigments were found at day 7 compared to day 15. 

At day 15, higher levels of chlorophyll were found in cells grown on 50% AWW–SS 

compared to the control and 25% AWW–SS (Fig. 2a). Similarly, the high content of total 

carotenoids, β–carotene, and peridinin were found in cells grow at 50% AWW–SS at the 

end of the cultivation (Fig. 2b-d). 

Fig. 3. Pigments content of Durusdinum glynnii cultured in different proportions of 
wastewater from shrimp culture in a synbiotic system. Different letters indicate 
significant differences (p<0.05) between treatments by Tukey’s post-hoc test. 
 

3.4 Antibacterial activity 

The acetonic extracts obtained from D. glynnii biomass showed inhibitory effects 

on the Vibrio parahaemolyticus and V. vulnificus (Fig. 3). An inhibition zone of about 10 

mm for V. parahaemolyticus was reported for all the extracts regardless of the growth 

medium. For V. vulnificus, an inhibition of about 6 mm was observed for the control, 25% 

and 50% AWW–SS, while a higher inhibition (close to 10 mm) was observed for the 

extracts from the biomass grown in 75% and 100% AWW–SS. Finally, the inhibition 



123 
 

zone of V. parahaemolyticus was positively correlated (p < 0.05) with the peridinin 

content; while the same correlation was no significant (p = 0.47) for V. vulnificus. 

Fig. 4. Inhibition zone (a) of extracts from Durusdinium glynnii biomass and correlations 
(b and c) with peridinin against Vibrio parahaemolyticus and V. vulnificus bacteria 
strains. VP – Vibrio parahaemolyticus; VV – Vibrio vulnificus. 
 

3.5 Economic analysis 

Based on the growth data, peridinin content, and culture medium cost, the economic 

analysis was conducted and summarized in Table 1. As the percentage of wastewater use 

increases, the cost of producing biomass and peridinin decreases. The treatment using 

only wastewater from shrimp culture was the cheapest, but, due its low biomass yield in 

comparison to the 75% AWW–SS treatment, it has a longer production time. 
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Table 1. Economic analysis of Durusdinium glynnii production using different 
proportions of culture medium and wastewater from shrimp farming in a synbiotic 
system. 

Treatment Culture 

medium cost 

(US$ m-3) 

Biomass 

production 

(g m-3) 

Peridinin 

content 

(g kg-1) 

US$ per 

Kg 

biomass 

US$ per g 

peridinin 

Production 

time 

(days)* 

f/2 medium 15.6 266.0±39.7 3.0±0.6 59.5±8.7 20.2±5.3 37.4±4.1 

25% 11.7 340.0±52.9 2.6±0.1 35.0±5.9 13.5±2.6 30.6±2.7 

50% 7.8 426.7±23.1 6.0±0.3 18.3±1.0 3.1±0.0 21.1±1.2 

75% 3.9 513.3±41.6 4.8±0.2 7.6±0.6 1.6±0.2 17.6±1.4 

100% 0 453.3±11.5 4.3±0.1 0 0 19.9±0.5 

* Time for production of 1 kg of biomass using a system with useful volume of 1 m3. 
 

4. Discussion 

The ability of microalgae to grow in aquaculture wastewater represents an important 

mechanism towards development of aquaculture circular models. A number of 

microalgae species have already been effectively used to convert nitrogen and phosphorus 

from marine and freshwater aquaculture effluents into biomass, and some of these reports 

are listed in Table 2. However, most of these studies do not present a real usability of 

microalgal biomass, promoting circularity in aquaculture. Herein, the extracts from the 

microalgal biomass cultured using wastewater from a synbiotic system has presented in 

vitro antibacterial activity against two pathogenic Vibrio bacteria strains. In addition to 

the peridinin, other carotenoids, i.e., β-carotene, lycopene and fucoxanthin, have been 

documented earlier was antibacterial agents (Cucco et al., 2007; Karpiński and 

Adamczak, 2019), thus, it is likely that other carotenoids in D. glynnii extract exhibited 

higher anti–V. vulnificus than peridinin. 

Table 2. Main characteristics of microalgae cultivation in various types of aquaculture 
wastewater. 
Microalga species System Target species TN (%) TP (%) Ref. 

Durusdinium glynnii SS Pacific white shrimp 50.1 71.7 This study 

Chaetoceros muelleri BFT Pacific white shrimp - 100 Magnotti et al. 2016 

Chlamydomonas sp.  - Tilapia 79.6 96.0 
Morando-Grijalva et 
al. 2020 
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Chlorella minutissima RAS Salmon 88.0 99.0 
Hawrot-Paw et al. 
2019 

Chlorella vulgaris 

BFT Tilapia 84.3 48.3 Oliveira et al. 2020 

RAS Tilapia 99.8 82.7 Gao et al. 2016 

- Pacific white shrimp 86.1 82.7 Gao et al. 2016 

- Flathead grey mullet 95.4 92.0 Andreotti et al. 2017 

Isochrysis galbana - Flathead grey mullet 66.0 91.9 Andreotti et al. 2017 

Nannochloropsis oculata BFT Pacific white shrimp 83.0 100 Magnotti et al. 2016 

Picochlorum maculatum - Pacific white shrimp 66.7 92.8 
Dinesh Kumar et al. 
2018 

Platymonas subcordiformi - Flounder 100 100 Guo et al. 2013 

Spirulina sp. - Tilapia 81.1 100 Cardoso et al. 2020 

Tetradesmus obliquus 
RAS Tilapia 99.7 99.6 

Tejido-Nuñez et al. 
2019 

RAS Tilapia 80.1 ~100 Ansari et al. 2017 

Tetraselmis chuii BFT Pacific white shrimp 87.0 100 Magnotti et al. 2016 

BFT – Biofloc system; RAS – Recirculating Aquaculture System; SS – Synbiotic System; 
TN – Total Nitrogen; TP – Total Phosphorus. 

 

The levels of nitrogen and phosphate compounds in aquaculture wastewater vary 

greatly between production systems, feed offered, animal density, etc. (Magnotti et al., 

2016; Ansari et al., 2017). The biofloc based system, i.e., heterotrophic, 

chemoautotrophic, and synbiotic system, accumulate large amounts of nitrate and 

orthophosphate over successive production cycles (El‐Sayed, 2021). Although nitrate 

exhibits less toxicity to shrimp than other nitrogenous forms, concentrations above 220 

mg L-1 can reduce shrimp growth and survival (Kuhn et al., 2010). Thus, nitrate 

decontamination is necessary to enable the reuse of water for several cycles. Various 

physical and chemical methods can be used efficiently to transform nitrate to harmless 

nitrogen gas, however, they are expensive and do not add value to aquaculture systems 

(Murphy, 1991; Liu et al., 2021). Herein, we demonstrated a reduction of nitrate, and 

other inorganic compounds, concomitant with the valorization of the produced biomass 

during the bioremediation. 
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The removal efficiency of TP found in the present study were similar to those 

reported for marine diatoms and chlorophytes (Ansari et al., 2017; Oliveira et al., 2020; 

Qian et al., 2022), but for TN the removal efficiency was relatively lower. For example, 

an efficiency removal of TN of 86.1% (6.81 to 1.17 mg L-1 of N) from the Pacific white 

shrimp farming by Chlorella vulgaris using a membrane photobioreactor (Gao et al., 

2016). Although some comparisons on removal efficiency may be subjective, that is, 

effluents with low initial concentrations of N and P tend to have higher removal rates, the 

physicochemical characteristics of the effluent after microalgae growth are considerably 

better and more suitable for disposal to aquatic ecosystems. In the present study, the levels 

of TN were reduced from 82.3 to 41.1 mg L-1, a nitrogen reduction 5 times higher than 

that reported by Gao et al. (2016). 

In particular, dinoflagellates are recognized for their high capacity to absorb and 

accumulate phosphorus, including organic and inorganic forms (Kim et al., 2021). Thus, 

organic phosphorus available in synbiotic systems may have been remineralized by the 

bacterial community and made available in different forms to support the growth of D. 

glynnii. This fact may also support the higher growth of D. glynnii in wastewater-

containing medium, compared to the control, since the enrichment of the phosphorus pool 

may contribute to the increase in the growth rate of dinoflagellates (Thomson et al., 2019; 

Mo et al., 2020). 

Partial replacement of the culture medium by 50 or 75% of AWW–SS improved 

the growth performance of D. glynnii compared to control and other treatments. In 

general, marine dinoflagellates show low growth rates due to shear stresses and other 

nutritional issues not yet elucidated (Rifaie‐Graham et al., 2021; Jeong et al., 2012). For 

example, the addition of soil extract to dinoflagellate culture medium is a traditional 

method to improve the growth of these microalgae (e.g., Berge et al., 2008; Müller et al., 
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2019). Although the composition of the soil extract is almost never evaluated, it is likely 

that some of these oligoelements present in the soil extracts are also present in the biofloc 

wastewater. Furthermore, endosymbiotic dinoflagellates fed on organic matter, such as 

bacteria and small microalgae. Jeong et al. (2012) reported that free-living Symbiodinium 

spp. acquired more nitrogen from prey than the uptake of inorganic nitrogen from f/2 

medium. Thus, organic residues smaller than 1 µm (filtration used in the present study) 

may also have served as feed for D. glynnii. 

Vibriosis are threat bacterial diseases that affects aquaculture industry worldwide, 

and also the presence of Vibrio spp. can cause gastrointestinal problems in humans 

(Sheikh et al., 2022). Thus, new natural antibiotics are being investigated to contribute to 

the sustainable development of aquaculture, and some of these reports were summarized 

in Table 3 (Ghosh et al., 2021). Soto-Rodrigues et al. (2022) reported that aqueous extract 

from the diatom Chaetoceros calcitrans inhibited the growth of V. parahaemolyticus. In 

the present study, the inhibition of V. parahaemolyticus was positively correlated with 

the content of the carotenoid peridinin. The mechanisms of antibacterial activity of 

carotenoids include cytoplasm leakage, nucleic acid formation inhibition, and outer 

membrane permeability. In addition, other carotenoids, such as β-carotene and 

fucoxanthin, have been documented earlier as antibacterial agents (Cucco et al., 2007; 

Karpiński and Adamczak, 2019), thus, another carotenoid may have exhibited a greater 

influence on V. vulnificus inhibition than peridinin. 

Table 3. In vitro activity of some biological anti-Vibrio spp. sources. 

Source 
Type of 
inclusion 

Dosage 
(μg mL-1) 

Method 
Vibrio 
strain 

Ref. 

Microalgae      

Durusdinium glynnii AcE  KBM VP, VV This study 

Chaetoceros calcitrans AqE 70 LM VP 
Soto-Rodrigues et al., 
2022 

Seaweeds      

Caulerpa 
sertularioides 

ME 1,000 MM VA, VP 
Esquer-Miranda et 
al., 2016 
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Gracilaria fisheri CPE 50 BMD VP Boonsri et al., 2017 

Gracilaria verrucosa EE 2 AD VH Rudi et al., 2019 

Ulva lactuca ME >1,500 MM VA, VP 
Esquer-Miranda et 
al., 2016 

Plants      

Moringa oleifera EE 64 BMPA VA Suhartono et al., 2019 

Musa acuminata AqE 1560 DD VP, VA 
Rattanavichai and 
Cheng, 2014 

Ocimum basilicum AqE 19 BMD VH, VP, VA Snoussi et al., 2016 

AD – Agar disk; DD – Disk diffusion; KBM - Kirby-Bauer method; BMPA – Broth 
microtiter plate assay; LM – Liquid medium; MM – Microplate methods; AcE – Acetonic 
extract; AqE – Aqueous extract; CPE – Crude protein extract; EE – Ethanolic extract; ME 
– Methanolic extract; VP – Vibrio parahaemolyticus; VH – Vibrio harveyi; VA – Vibio 
alginolyticus; VV – Vibrio vulnificus. 
 

5. Conclusions 

Results of the present study clearly demonstrate that wastewater from a synbiotic 

system has adequate characteristics for the growth of the marine dinoflagellate D. glynnii, 

and it has shown higher biomass productivity when grown at a 75% wastewater. Nitrogen 

and phosphorus levels were reduced by 50.1 and 71.7%, respectively, from the 

wastewater, and this can make it possible to reuse the water for new shrimp production 

cycles, reducing negative impacts of accumulation of these harmful compounds to the 

animals. Moreover, metabolites from biomass produced using synbiotic wastewater can 

be used to control vibriosis during shrimp production. This circular approach represents 

a robust model towards development of circularity in aquaculture, contributing to the 

achievement of SDGs in 2030 Agenda. 
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4. General conclusions 

With the works presented in this thesis, it can be concluded that: 

 Dinoflagellate research is an active area of science with interests aimed at 

elucidating the harmful bloom phenomena and the endosymbiotic relationship 

with coral reefs; 

 Studies with toxic dinoflagellates are of greater interest compared to non–toxic 

ones; 

 Dinoflagellate biotechnology may become important organisms to achieve the 

SDGs set by the United Nations in 2030 Agenda; 

 Light and nutrients (mainly carbon and nitrogen) are essentials requirements 

towards baseline research of underexplored microalgae; 

 Light induces both primary and secondary metabolisms in the endosymbiotic 

dinoflagellate D. glynnii. 

 D. glynnii can effectively uptake nitrogen and phosphorus compounds from 

synbiotic aquaculture wastewater, and to produce antibacterial compounds in a 

holistic with quasi-zero residue approach. 

 High nitrogen supply can increase the light and thermal tolerance of D. glynnii. 
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Due to the COVID-19 pandemic, the number of conferences in the period between 2020 

and 2021 was lower than usual. Despite that, the PhD candidate participate in two 
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conferences, and six conference papers authored or co-authored were published: 
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Abstract

Microalgae biomass is among one of the most promising sustainable raw materi-

als for many industrial sectors especially biodiesel production. Although a great

diversity of microalgae species has been described and isolated, few have been

used for large-scale cultivation. This review presents a multidisciplinary overview

of studies on Tetradesmus obliquus – a freshwater microalga suitable for large-

scale production and emerging environmental applications. It reviews the taxo-

nomic history of T. obliquus and its potential commercial applications, including

cultivations techniques and environmental parameters, production systems, har-

vesting and drying of biomass, and its biochemical composition. In addition, a

model refinery for T. obliquus is proposed that combines the main productive

bioprocesses. Finally, a bibliometric analysis is presented and opportunities for

future research with T. obliquus are identified.

Key words: Acutodesmus obliquus, bibliometric analysis, biorefinery, renewable energy, Scene-

desmus obliquus, wastewater treatment.

Introduction

Global microalgae biomass production, even after many

years of research and a highly sustainable production

chain, is low when compared to other aquaculture sec-

tors (FAO 2018). Few species have been produced on a

commercial-scale (e.g. Chlorella spp., Arthrospira platen-

sis (Spirulina), Haematococcus pluvialis and Dunaliella

salina), they are destined mainly for applications in the

food industry (Higuera-Ciapara et al. 2006; Ben-Amotz

et al. 2009; Fradique et al. 2010; Garrido-Cardenas

et al. 2018). In aquaculture, live microalgae (e.g.

Chaetoceros calcitrans, Isochrysis galbana, Navicula spp.,

and Pavlova lutheri) are used as hatchery and nursery

feeds for shrimp, bivalve molluscs, larval finfish and

also used to feed zooplanktons (Muller-Feuga 2000;

Yarnold et al. 2019). In both cases, lipids (carotenoids

and neutral lipids) and proteins are among the com-

pounds of greatest interest.

Microalgae offer a wide range of applications, processes

and products, including the following: renewable energies

(third-generation biofuels), water/air decontamination and

potential products for pharmaceutical, cosmetic and

nutraceutical industries, making their utilization important

for new business developing (Chisti 2007; Kumar et al.

2010; Safi et al. 2014; ’t Lam et al. 2018; Collotta et al. 2018;

Dur�an et al. 2018; Oliveira et al. 2020c). Furthermore,

microalgae cultivation can also make use of water and land

that is unsuitable for agriculture and, thus, not compete

with (or affect) traditional agriculture (Lozano-Garcia et al.

2019; Serr�a et al. 2020).

Among an estimated total of over 300 000 microalgae,

species of the genus Scenedesmus (Sphaeropleales,

Scenedesmaceae) are prominent. It is the world’s third

© 2021 John Wiley & Sons Australia, Ltd1594
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most studied genus in terms of number of documents pub-

lished – interestingly more than the genera Spirulina and

Nannochloropsis (Garrido-Cardenas et al. 2018). Scenedes-

mus is cosmopolitan and one of the most common genera

of green microalgae in freshwater environments. This genus

has single-celled individuals capable of forming 2–32 cell

coenobia, but usually forms a four-celled coenobium that

are surrounded by a mucilaginous matrix. Tetradesmus

(Scenedesmus) obliquus (Turpin) M.J.Wynne (Fig. 1), in

particular, is recognized in Scenedesmaceae due to knowl-

edge of the genetic coding of their mitochondria – which

facilitates its identification by mtDNA analysis (Nedelcu

et al. 2000).

This review systematically reveals key information about

T. obliquus, which includes the following: cultivation and

harvesting techniques, scientific information on taxonomy

and morphology, biochemical composition and new

insights and potential environmental applications in vari-

ous industries. Finally, a bibliometric analysis is also pre-

sented to highlight the interest in the T. obliquus

cultivations over the years in research and technological

development areas.

History, taxonomy and morphology

Tetradesmus, Acutodesmus, Desmodesmus and Scenedesmus

are green algae genera that have a relative morphological

similarity. Modern genetic tools (e.g. ITS-1 e -2 rDNA,

mtDNA) contributed to clarifying some taxonomic gaps in

the family Scenedesmaceae, although in the 20th century

beginning taxonomic impasses still prevailed for these four

genera (Chodat 1913; Smith 1913; West 1915).

Tetradesmus obliquus (worldwide known as Scenedesmus

obliquus and reclassified as Acutodesmus obliquus) was ini-

tially described taxonomically as Achnanthes obliqua (Tur-

pin 1828) and since then some changes have been

suggested. After the landmark creation of the genus

Desmodesmus, when all species of Scenedesmus which

thorns were classified to this genus, a recent change in the

family Scenedesmaceae reclassified T. obliquus. After the

reclassification of T. wisconsinensis as Acutodesmus wiscon-

sinensis (see Tsarenko and Petlovanny (2001) supported by

Hegewald et al. (2013)), Wynne and Hallan (2015) recalled

that the generic name Tetradesmus had priority over Acu-

todesmus and for this reason, eleven taxa (including at that

time Acutodesmus obliquus) were reclassified as Tetrades-

mus. Even though it is still referred to as S. obliquus in a

number of current studies, T. obliquus was chosen in this

review (including studies using S. obliquus and

A. obliquus), because it is the current taxonomic classifica-

tion for this taxon. The main and historical taxonomic clas-

sifications attributed to T. obliquus are shown in Box 1.

The cell wall of T. obliquus is mostly composed of neu-

tral sugars (glucose, mannose, fructose and rhamnose) and

amino acids (Blumreisinger et al. 1983). Each cell has a sin-

gle chloroplast that fills the entire inner surface of the cell, a

pyrenoid is also present near the centre of cells (Cep�ak

et al. 2007; Wei et al. 2010). The species reproduces asexu-

ally by releasing autospores through rupture of the cell wall.

Nonetheless, rare cases of sexual reproduction with biflagel-

late gametes have been reported (Trainor & Burg 1965).

Under stress conditions like nitrogen depletion, chromium

and thermal stresses, lumps of T. obliquus wrapped by a

mucilage sheath are formed (Cain & Trainor 1976; Corradi

et al. 1995). Another more easily discernible defence strat-

egy in T. obliquus cells is the formation of colonies. The

infochemicals released by different zooplankton taxa have

been associated with this strategy where the colony size was

proportional to the concentration of chemicals released by

herbivores (Verschoor et al. 2004). In addition, morpho-

logical defence in T. obliquus is also affected by other

microalgae species such as Microcystis aeruginosa (Zhu

et al. 2015). Although these defence strategies may not be

very commonly reported, they may seem to contribute to

Figure 1 Micrographs of Tetradesmus obliquus cells on optical microscopy (images adapted from SAG (2020)).
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the robustness of this species – making it promising for

large-scale cultivations.

Microalgae production

Recent studies showed that the potential of T. obliquus for

large-scale biomass production has not been exploited yet.

This microalga has a fast growth rate and it is extremely

resistant to adverse conditions, which is the key characteris-

tic for large-scale cultivation. Potential of T. obliquus to

grow in nitrogen and phosphorus rich wastewater has also

been proven in several studies (Mart�ınez et al. 2000;

Hodaifa et al. 2008; Mata et al. 2012; Gupta et al. 2016; Fer-

reira et al. 2019). The ability of microalgae to grow in

wastewater is attractive because they provide a pathway for

converting chemical contaminants into biomass (Brennan

& Owende 2010). T. obliquus is highly tolerant to high tem-

perature (Yang et al. 2018) and irradiance (Hurtado et al.

2019). Moreover, it also can grow under heterotrophic and

mixotrophic conditions (Shen et al. 2018; Di Caprio et al.

2019), and different nutrient strategies have been evaluated

(Papazi et al. 2018; Qu et al. 2019). Therefore, the continu-

ous study of T. obliquus cultivation techniques improve-

ment is an important step for the validation of a productive

technological package for this species. In this section, a

brief description of the major advances in nutritional meta-

bolisms and cultivation systems employed in cultivating

T. obliquus is provided.

Photoautotrophic growth

Photoautotrophic growth is the most common means of

cultivation for all microalgae species and is the cheapest

method for large-scale production. Microalgae in photoau-

totrophic cultures carry out photosynthesis to convert light

energy into chemical energy, which is conserved as adeno-

sine triphosphate (ATP) and nicotinamide and adenine

dinucleotide phosphate (NADPH) – subsequently these

compounds are used in the CO2 reduction for synthesis of

carbohydrates and other organic compounds (Xia & Mur-

phy 2016). In order to reach high cell densities cultures in

photoautotrophic growth cultivation systems the main pre-

cautions must be directed to the irradiance and inorganic

carbon (mainly CO2) availability.

Raceway ponds

Raceway ponds are the most widespread and feasible culti-

vation systems for large-scale microalgal production despite

having several limitations. The main limitations include

higher susceptibility to contamination by protozoa, bacte-

ria and other microalgae species, low productivity in sys-

tems with high depth, high costs with biomass harvesting

(due to the low concentration cell and large volume) etc.

(Safi et al. 2014). The water channel depth may vary

between 10 and 50 cm, depending on the natural irradiance

of the environment which results in a low illuminated sur-

face-to-volume (S/V) ratio (Garc�ıa-Gonz�alez et al. 2003).

In addition, high temperature and irradiance oscillations,

and low CO2 availability may also make the high growth

rates of some species unfeasible in raceway ponds (Borow-

itzka 1999).

Photobioreactors

In general, laboratory cultures are maintained and grown

in photobioreactors of different sizes and formats. Photo-

bioreactors are closed systems that provide higher biomass

production (1.5–4.0 g L�1). There are less chances of con-

tamination in photobioreactors compared to raceway

ponds (Lee & Shen 2003). However, the cost of mainte-

nance and production of photobioreactors makes it unfea-

sible if the desired end products do not have a high

commercial value. Photobioreactor technology allows strict

control of cultivation conditions and thus isolates a

Box 1. Taxonomic history of Tetradesmus
obliquus

Empire: Eukaryota

Kingdom: Plantae

Subkingdom: Viridiplantae

Infrakingdom: Chlorophyta infrakingdom

Phylum: Chlorophyta

Subphylum: Chlorophytina

Class: Chlorophyceae

Order: Sphaeropleales

Family: Scenedesmaceae

Genus: Tetradesmus

Nomenclature Publication details Refs.

Achnanthes obliqua Turpin 1828: 312 Turpin (1828)

Scenedesmus

acutus

Meyen 1829: 775 Meyen (1829)

Scenedesmus

bijugatus

K€utzing 1834: 607 K€utzing (1833)

Scenedesmus

obliquus

K€utzing 1834: 609 K€utzing (1833)

Scenedesmus

basiliensis

Chodat 1926: 136 Skrebovskaya et al.

(2015)

Scenedesmus

acutus f. alternans

Hortob�agyi 1941: 164 Hortob�agyi (1941)

Acutodesmus

obliquus

Hegewald and

Hanagata 2000: 156

Hegewald and

Hangata (2000)

Tetradesmus

obliquus

Wynne 2015: 84 Wynne and Hallan

(2015)
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variable (e.g. pH, irradiance, temperature, CO2 concentra-

tion, culture medium etc.) to be studied. In intensive sys-

tems, Grobbelaar (2003) stated that atmospheric CO2 is

insufficient to meet the carbon demands of cells.

Thin-layer system

Thin-layer systems are perhaps an evolved version of race-

way ponds (Tramontin et al. 2018). In these systems, cul-

tures are maintained in a turbulent flow in a water column

(of few millimetres) which allows higher volumetric and

areal productivities (Masoj�ıdek & Pr�a�sil 2010; Morales-

Amaral et al. 2015). Thin-layer systems, unlike other open

systems, tend to be less susceptible to contamination by

microorganisms, as high cell density prevails over contami-

nations (Masoj�ıdek et al. 2011). An important characteristic

of this system is its high illuminated S/V ratio. This

increases the photosynthetically active culture volume

which is one of the main problems faced during operation

of raceway ponds (Venancio et al. 2020). However, heat

retention due to the thin layer of cultivation exposed to

solar irradiance in the daytime allows survival of only ther-

motolerant strains in this system. In fact, thin-layer systems

can be 12–100 times more productive when compared to

photobioreactors and raceway ponds, respectively

(Masoj�ıdek et al. 2011).

Heterotrophic growth

In heterotrophic cultivation, an organic carbon source is

used to fulfil nutritional and energy requirements (Venkata

Mohan et al. 2015). The non-dependence on light and dis-

regard for the high illuminated S/V ratio, results in signifi-

cantly higher biomass compared to photoautotrophic

cultivation. Nevertheless, in contrast to the photoau-

totrophic cultivation where there is continuous oxygen

production, in the heterotrophic cultivation oxygen is con-

sumed which is related to the cellular respiration process

that is regulated by energy demand in the ATP and

NADPH form (Griffiths et al. 1960; Geider & Osborne

1989). The possibility of using industrial fermenters and

reducing water use (due to high cell density) makes hetero-

trophic cultivations a viable alternative for the hetero-

trophic microalgae development. In addition, the

heterotrophic cultivation would help to reduce harvest

costs (Venkata Mohan et al. 2015).

Mixotrophic growth

The possibility of using organic carbon and light as an

energy sources makes mixotrophic cultivation a promising

strategy for ultrahigh cell density cultivations (Geider &

Osborne 1989). Some studies have suggested that the

microalgae growth rate under mixotrophic metabolism is

approximately the sum of heterotrophic and photoau-

totrophic metabolisms, provided they be under the same

conditions (e.g. temperature, culture medium, carbon

source etc.); however, mixotrophic metabolic flow is

more complex than a possible sum of metabolisms

(Girard et al. 2014; Shen et al. 2018; Oliveira et al. 2021).

A compilation of productive results of T. obliquus on dif-

ferent metabolisms and culture systems is listed in

Table 1.

In a comparative study of the three nutritional metabo-

lisms (photoautotrophic, heterotrophic and mixotrophic)

conducted by Shen et al. (2018), the nitrogen assimilation

rate in the photoautotrophic mode (5.7 � 0.5 mg L�1

day�1) by T. obliquus was about 2 and 4 times lower when

compared to that under heterotrophic (10.7 � 0.7 mg L�1

d�1) and mixotrophic (22.7 � 0.3 mg L�1 day�1) metabo-

lism, respectively, using acetate as carbon source. These

authors also reported that the acetate assimilation rate was

about three times higher in mixotrophic cultures

(1.43 � 0.04 mg L�1 day�1). On the other hand, Vieira

(2018) reported 14.77 g L�1 of biomass grew under mixo-

trophic mode using glucose as carbon source in a fed-batch

culture. In addition, the heterotrophic cultivation, also using

glucose, reached 7.9 g L�1 of biomass and this culture was

limited by the oxygen availability into photobioreactor. Nei-

ther of these two studies evaluated the presence of bacteria

in the cultures that manage to compete (and often to pre-

vail) with microalgae for the organic substrate provided in

the culture medium.

Tang et al. (2011) reported that T. obliquus could grow

at 50% CO2 (~0.7 g L�1) but in fact grew well

(~1.25 g L�1) under CO2 ranging from 5 to 20% at

25 � 1°C and 180 lmol photons m�2 s�1. These authors

also reported a maximum carbon biofixation rate of

0.288 g L�1 day�1 at 10% CO2. The results suggest

T. obliquus have great potential to treat CO2-rich gaseous

effluents and potentially to convert the biomass into bio-

products.

The reduction in trace element concentration up to

1000-fold did not affect the growth performance of

T. obliquus using the LCA-AD medium (adapted from

Bold’s Basal) (Oliveira et al. 2020a). The authors reported

4.2 g L�1 of biomass grown up at 0.3 g L�1 day�1 with

irradiance increasing 360 to 1200 lmol photons m�2 s�1.

Growth of T. obliquus at high irradiance is also an impor-

tant finding as this is a mandatory requirement for large-

scale cultivations. The biomass productivity of T. obliquus

reached up to 30 g m�2 day�1 in a solar tracked flat panel

photobioreactor (Hindersin et al. 2014). The authors

pointed out some advantages in solar tracked photobiore-

actors compared to static photobioreactors, such as

increased light supply that enabled a year-round produc-

tion of T. obliquus biomass, at unfavourable and fickle
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climatic conditions. Recently, Venancio et al. (2020) anal-

ysed the influence of S/V ratio in biomass production of

T. obliquus in a thin-layer cascade system. They reported

the 80 m�1 S/V (1.19 g L�1 day�1) is more productive

than 60 m�1 S/V (0.95 g L�1 day�1) and it can affect the

biomass reached, 20.14 g L�1 and 14.60 g L�1 for 80 and

60 m�1 SV, respectively. The authors attributed these dif-

ferences to the photosynthetic and the carbon conversion

efficiencies. Therefore, it is crucial to select production sys-

tem and growth metabolism, given the wide variety of tech-

niques successfully employed for the cultivation of

T. obliquus. This can determine the cost-effective cultiva-

tion, no matter the size of the facility, or its geographical

location.

Culture conditions

The culture conditions (availability, quality and source)

can affect the growth and biomass accumulation, as

well as biochemical composition of T. obliquus. The

changes in the culture conditions can favour the

production of a specific biocompound like lutein (Ho

et al. 2015).

Carbon source

The carbon source varies depending on the nutritional

metabolisms. Nevertheless, irrespective of the nutritional

metabolism, carbon is the main nutrient required for the

growth of microalgae since it represents about 50% of the

dry cell weight. For most microalgae, CO2 is the main car-

bon source in the photoautotrophic cultures, since this gas

diffuses rapidly from the water into the cells (passive diffu-

sion) and is used directly in the Calvin-Benson cycle (Chisti

2007). Moreover, use of sodium bicarbonate as a carbon

source increased biomass production by 9% in T. obliquus

(Mansouri & Hajizadeh 2018). Although it is stoichiometri-

cally impossible to achieve high biomass using only atmo-

spheric CO2, in super-intensive cultures role of CO2 is

almost exclusively as a pH regulator than as a nutrient –
which results in excessive expenditure of CO2 and low con-

version into biomass (Lee & Shen 2003).

Regarding organic carbon sources, glucose is the main

substrate used for heterotrophic and mixotrophic cultures

Table 1 Growth performance of Tetradesmus obliquus in different cultivation systems and nutritional metabolisms

Strain Nutritional mode Cultivation system Strategy Biomass maximum

(g L�1)

Productivity

(g L�1 day�1)

References

T. obliquus SJTU-3 Photoautotrophic Photobioreactor Simple

batch

1.84 0.155 Tang et al. (2011)

T. obliquus CNW-N Photoautotrophic Photobioreactor Simple

batch

3.51 0.292 Ho et al. (2010)

T. obliquus Photoautotrophic Photobioreactor Simple

batch

4.35 0.317 Oliveira et al. (2020a)

T. obliquus Photoautotrophic Thin-layer Fed-batch 20.14 1.19 Venancio et al. (2020)

T. obliquus CPCC-5 Heterotrophic Photobioreactor Simple

batch

2.7 0.208 Girard et al. (2014)

Mixotrophic Photobioreactor Simple

batch

3.5 0.269

T. obliquus Heterotrophic Photobioreactor Fed-batch 9.53 0.98 Vieira (2018)

T. obliquus Photoautotrophic Photobioreactor Fed-batch 7.9 0.52

T. obliquus Mixotrophic Photobioreactor Fed-batch 14.77 1.24

T. obliquus SAG

276.7

Photoautotrophic Photobioreactor Simple

batch

4.92 0.57 Gris et al. (2014)

T. obliquus SAG

276-3a

Photoautotrophic Photobioreactor Simple

batch

1.25 0.06 Mandal and Mallick

(2009)

Mixotrophic Photobioreactor Simple

batch

5.11 0.51

T. obliquus Photoautotrophic Hybrid

photobioreactor

Simple

batch

1.16 0.13 Tramontin et al.

(2018)

T. obliquus NIES-

2280

Photoautotrophic Photobioreactor Simple

batch

0.56 0.09 Shen et al. (2018)

Heterotrophic Photobioreactor Simple

batch

0.68 0.11

Mixotrophic Photobioreactor Simple

batch

2.20 0.37
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and it is worth noting that many microalgae species cannot

assimilate any other organic carbon source other than glu-

cose, under heterotrophic or mixotrophic metabolisms. On

the other hand, the study of alternative organic carbon

sources (e.g. acetate, fructose, glycerol etc.) employed in the

development of mixotrophic and heterotrophic cultivations

can contribute to the economic viability of theses cultiva-

tion modes (Combres et al. 1994; Yang et al. 2014; Bagchi

& Mallick 2016; Katiyar et al. 2017; Song & Pei 2018).

Comparing the results of maximum biomass reached in the

heterotrophic and mixotrophic cultivations reported by

Shen et al. (2018), using acetate, (0.68 and 2.5 g L�1,

respectively) and Vieira (2018), using glucose, (7.9 and

14.77 g L�1, respectively), it is possible to conclude that

glucose is more suitable for biomass production of

T. obliquus.

In addition, glycerol may be an organic carbon source

suitable for biomass production of T. obliquus. It is a by-

product of biodiesel production (Anitha et al. 2016) which

offers a range of commercial applications. However, its

excessive production due to the rapid expansion of biodie-

sel plants throughout world poses a major problem to these

plants and the industry (Mario Pagliaro 2008). The cultiva-

tion of microalgae using glycerol has recently been used for

different species through an integrated chain (Paranjape

et al. 2016; Salati et al. 2017) but despite this, we not found

reports on T. obliquus biomass production using glycerol

as organic carbon source.

Nitrogen source

Nitrogen plays a vital role in microalgae cell growth and

synthesis of amino acids and lipids which make up about

10% cell dry weight (Wijffels et al. 2010). Ammonia, nitrate

and nitrite are the most commonly used nitrogen sources

for microalgae growth and each will have a different effect

on cell growth and biochemical composition (Lourenc�o
et al. 2004). Compared to nitrate, ammonia supplementa-

tion accelerates nitrogen metabolism (since nitrate needs to

be reduced to ammonia intracellularly) and is also econom-

ically efficient (since ammonia-based compounds are

cheaper than nitrate-based compounds). However, high

concentration of ammonia exhibits toxicity to cells (Gutier-

rez et al. 2016).

The nitrogen source can influence the biomass and lutein

productivities in T. obliquus (Tang et al. 2011). The authors

reported biomass production using nitrate as nitrogen

source was around 2–3-fold higher than that obtained from

using ammonia and urea, indicating that nitrate is the

favourable nitrogen source for the biomass production of

T. obliquus. On the other hand, the lutein content

increased gradually along with the consumption of ammo-

nia and urea, while the maximum lutein content was

obtained at the beginning of nitrate depletion, while the

lutein content started to decrease under the nitrate deple-

tion condition.

A consolidated strategy for increasing the lipid yield in

T. obliquus (and also other microalgae) is nitrogen deple-

tion; however, this strategy reduces the biomass produc-

tion, and consequently the overall lipid yield (Breuer et al.

2013; Chu et al. 2014; Shen et al. 2018). Thus, a balanced

culture medium must be provided to improve biomass

production followed by low nitrogen content conditions to

increase the lipid synthesis.

Light

Light source is an important requirement in microalgae

photoautotrophic (and also mixotrophic) cultures. But,

with increase in cell density, the availability of light is a lim-

iting factor for intensive cultures due to cell self-shading.

On the other hand, if cells cannot efficiently distribute

excess amounts of light, it accumulates in the photosystem

causing photo-oxidation (Carvalho et al. 2011; Deng et al.

2019). To avoid chlorophyll photo-oxidation, it is essential

that the irradiance is gradually increased as the number of

cells increases. In this sense, a suitable model of increased

irradiance related to the total chlorophyll content of

T. obliquus cells was proposed by Oliveira et al. (2020a).

Nevertheless, quality (colour) and duration (photoperiod)

of light can affect the growth and photosynthetic pigments

of T. obliquus. The growth of T. obliquus decreased when

different colours of lights were used in the order

red > white > blue > green (Cep�ak et al. 2006). In short,

green is the only light in the visible spectrum that algae

chloroplasts do not use, simply because green light is com-

pletely reflected. Biomass yield of T. obliquus as a function

of light (gbiomass molphoton
�1) was similar in the 14:10 and

12:12 photoperiods (light: dark) (Le�on-Saiki et al. 2018).

Therefore, establishing an ideal light condition is a neces-

sary measure to reduce costs (in indoor systems) and pre-

vent any damage to cells.

Gris et al. (2014) investigated the effect of various irradi-

ance conditions on growth, productivity and biochemical

composition of T. obliquus; their investigation showed that

maximum growth rate at 150 lmol photons m�2 s�1.

They suggested that light intensity above 150 lmol pho-

tons m�2 s�1 inhibit the growth of microalgae but the bio-

chemical composition did not show significant variation

under different illumination conditions. Interestingly, Ven-

druscolo et al. (2019) reported that photoperiods/light dark

cycle directly affected T. obliquus growth, as well as protein,

lipid and chlorophyll content. Cultivation under constant

illumination was favourable to cell development and pro-

tein production, while cultivation with dark periods

(12:12) induced higher lipid and chlorophyll production.

These authors also reported that content of metabolites,

organic acids, amino acids and fatty acids (FAs) was
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influenced by different photoperiods and cell growth

phases. The levels of proteins, lipids chlorophyll and bio-

mass were significantly altered under different cultivation

conditions.

Salinity

Water is fundamental to agricultural activity. Nonetheless,

water scarcity in arid and semi-arid regions, as well as com-

petition of the use of water from other fields (such as agri-

culture and livestock), lower the acceptability of microalgae

cultivation by the agricultural farmers. Microalgae do have

some advantages for development in regions unsuitable for

agriculture (e.g. infertile or sandy soil, low availability of

freshwater) (Chisti 2007). An attractive and viable alterna-

tive is the use of brackish waters (which are non-potable

and often unsuitable for agriculture and livestock) for

microalgae cultivation. In this regard, freshwater microal-

gae species may be more likely to be grown in brackish

waters than marine microalgae species (Shetty et al. 2019).

According to Pandit et al. (2017), the growth of T. obliquus

was reported even at salinity of 23.4 g L�1 although the

best biomass production was reported at a 3.5 g L�1. In

addition, these authors observed that sodium chloride

(NaCl) favoured the lipid yield and also increased the pal-

mitic acid content. Gan et al. (2016) reported a possible

biological desalination, using T. obliquus, and lipid produc-

tion using brackish water, at salinity ranging from 1.2 to

8.8 g L�1 of NaCl. The use of microalgae biological desali-

nation is more advantageous than conventional desalinizers

that use electricity and inevitably generate a salt-rich waste.

Temperature

The temperature of the culture affects the growth rate of

microalgae. The ideal temperature to provide high biomass

production varies between 15 and 30°C. Low temperatures

(15–20°C) can reduce or limit growth and are commonly

used in the strains maintenance – where a high growth rate

is not desired. On the other hand, relatively high tempera-

tures (20–30°C) accelerate the metabolic rate, resulting in

an increase in chemical energy for cellular increase and

multiplication (Ras et al. 2013). According to Guedes et al.

(2011a), biomass productivity of T. obliquus was almost

three times higher at 30°C (0.834 � 0.054 g L�1 day�1)

when compared to 20°C (0.37 � 0.017 g L�1 day�1).

Mart�ınez et al. (1999) did not observe differences in the

growth of T. obliquus at 30 or 35°C. In addition, a culture

of T. obliquus in a thin-layer system, where temperature

reached 40°C (ranged from 24 to 40°C), did not show any

effect on growth performance (Venancio et al. 2020). These

findings have proved that T. obliquus as a thermotolerant

microalga and promising candidate for the development of

intensive cultivations in tropical, semi-arid and desert areas

– which are, in most cases, unsuitable for agriculture.

Microalgae harvesting and biomass processing

Harvesting, drying and storage are the major challenges in

downstream microalgal processes. It is estimated that the

cost involved in these processes can overcome 30% of the

total production cost (Li et al. 2020). Basically, microalgae

harvesting is the separation process involving a heteroge-

neous mixture composed by a discontinuous solid (mi-

croalgae cells) and a continuous liquid (culture medium).

It is already known that the harvesting process must be fast,

low energy demanding and should not contaminate the

biomass (or leave waste). On the other hand, biomass dry-

ing represents a step prior to storage/purpose. Although

studies have already been done on microalgae harvesting

(e.g. flocculation, flotation, electrophoresis, filtration, cen-

trifugation etc.) and drying (e.g. freeze-drying, spray-dry-

ing, oven-drying, sun-drying etc.) processes, these

processes still represent a limiting step to the microalgae

biomass production chain (Oliveira et al. 2018; De Melo

Aguiar et al. 2019; Xue et al. 2019; Zhou et al. 2019; Liu

et al. 2019a). This is mainly because large-scale cultivations

often occur in large volumes and with low productivity –
which makes it difficult for efficient harvesting (Roselet

et al. 2019).

The flocculation efficiency using Fe3O4@PEI (nano-

Fe3O4 coated with polyethyleneimine) was higher for

T. obliquus when compared to Chlorella pyrenoidosa (Liu

et al. 2019b). The authors reported a lower flocculation

time (15 and 20 min) and dose (16- and 20-mL L�1) for

reaching an 98% efficiency in recovery of T. obliquus cells

grown in urban sewage. In another study carried out by

Dias et al. (2021), green flocculants have showed efficien-

cies greater than 60% and 80% for tropical trees Guazuma

ulmifolia and Moringa oleifera, respectively, on the recovery

of T. obliquus BR003 biomass. The use of efficient natural

flocculants is necessary, mainly for pharmacological and

food industries, because they do not present risks to human

health or the environment (Singh & Patidar 2018). The

choice of an appropriate flocculant is, therefore, essential

not only for the efficiency of the coagulation-flocculation

process but also for the sustainable development of the

microalgae production chain (Houser et al. 2014).

Recently, two studies reported the effect of harvesting

and drying methodologies on the energy recovery of

T. obliquus biomass (Wang et al. 2019; Oliveira et al.

2020b). Wang et al. (2019) reported that flocculation of

T. obliquus biomass using ferric sulphate was equally effi-

cient in centrifugation and increased the biodiesel produc-

tion (91.7 to 112.6 mg g�1 dw). In the same way, Oliveira

et al. (2020b) found similar biodiesel productivities (some-

where around 140 mg g�1 dw) between flocculation, using

a cationic polyacrylamide, and centrifugation; however,

using the oven-drying process caused the biodiesel yield to
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drop considerably (50.67 mg g�1 dw). It was more likely

that the high oven temperatures may have favoured the

bonding of the polymers to the cell walls, acting as a physi-

cal barrier against the efficient extraction of the apolar frac-

tion from the T. obliquus biomass. In addition, the findings

by Oliveira et al. (2020b) showed the effects of drying

methodologies on the fatty acid methyl esters (FAMEs)

composition extracted from T. obliquus. Briefly, a non-

dried biomass (wet biomass) presented a suitable FAMEs

profile for biodiesel production (lower unsaturated FAs

content); on the other hand, dried biomasses (in a freeze-

or oven-drying) showed a reduction in saturated (SFA) and

monosaturated fatty acids (MUFA) contents and an

increase in polyunsaturated fatty acids (PUFA) content.

These studies represent a major breakthrough, especially

for the microalgae-derived biodiesel industries, since floc-

culation is shown to be an efficient and non-predictive

method for biodiesel quality (considering only the FAs pro-

file). In addition, the fact that non-dried biomass has

higher SFA and MUFA levels (which give greater energy

release) also represents a time and cost reduction, perhaps

making microalgae-derived biodiesel competitive in the

world scenario.

Biochemical composition

Microalgae are natural producer of biochemical com-

pounds such as carbohydrate, protein, FAs and photosyn-

thetic pigments (Dantas et al. 2019). It is well documented

that biochemical composition of microalgae varies from

species to species; simultaneously, it also depends on vari-

ous factors, that is growth condition and composition of

culture media. Carbohydrates are the common energy and

carbon storage products in algae which play important role

in their metabolism. The carbohydrate content in algae

depends on various factors. A carbohydrate content

~27.7% has been reported in T. obliquus cultivated in Bris-

tol media under controlled condition (Khatoon et al.

2019). The ranges of gross biochemical composition of

T. obliquus are shown in Table 2.

Fatty acids

The free fatty acids (including steroids and pigments, which

cannot be converted into biodiesel) are the group of the

highest interest within microalgae lipids. SFA and MUFA are

preferable for biodiesel production as they release higher

calorific value, some long-chain PUFA known as essential

fatty acids (EFAs), exhibit biological activities and are con-

sidered relevant for the treatment of diseases (Mendes et al.

2009; D’Alessandro & Antoniosi Filho 2016). They are essen-

tial because your body cannot produce them on its own so

they must come from the diet. FAs composition and yield of

T. obliquus varies depending on salinity (Salama et al. 2013),

nitrogen source (An et al. 2020), nutrient stress (Chu et al.

2014), cultivation mode (Shen et al. 2018) or the way in

which biomass is processed (explained in Microalgae har-

vesting and biomass processing section). The main FAs

reported for T. obliquus biomass are listed in Table 3.

Shen et al. (2018) reported the FAME contents of

T. obliquus for the photoautotrophic, heterotrophic and

mixotrophic cultures with sufficient nitrogen supply were

11.0, 12.0 and 14.6%, respectively, while under nitrogen

deplete, they were 15.3, 47.1 and 44.1%, respectively. The

oil contents of algae from three cultures were all improved

by nitrogen starvation. Moreover, the FAME content in

heterotrophic nitrogen-deficient mode was higher than the

mixotrophic nitrogen-deficient mode. Finally, the authors

also reported variation on the FAMEs composition of

T. obliquus. Under nitrogen-repletion conditions, the dom-

inant FAMEs of heterotrophic and mixotrophic cultiva-

tions were similar (C18:1, C16:0, C18:3), and they were

different with photoautotrophic cultivation (C18:3, C16:0,

C18:2). In addition, under nitrogen-depletion conditions,

C18:1 accounted for 50.6% and 53.4% of the total FAMEs

in the heterotrophic and mixotrophic cultures, respectively,

the data were also much higher than that from photoau-

totrophic culture (32.7%).

Ji et al. (2015) reported the increasing in SFA (mainly

C16:0) and MUFA (mainly C18:1) contents using 14.1%

CO2 compared with 5% CO2 in a culture medium contain-

ing wastewater. In addition, the FAs content of T. obliquus

cultured in 1 or 2% wastewater supplemented with 10 or

14.1% CO2 showed a highest concentration of C16:0 (36–
38%). The use of wastewater for production of biomass

convertible into biodiesel, it is an alternative to be studied

economically since biomass produced in conventional cul-

ture media is extremely expensive to become competitive

with fossil fuels.

Amino acids

Amino acids (or a-amino acids) are organic structural

components that have two different functional groups (a

Table 2 Gross biochemical composition (min-max) of Tetradesmus

obliquus

% (w/w) Ref.

Carbohydrates 10–69 Harun et al. (2009) and Oliveira

et al. (2020a)

Total lipids 10–56 Qu et al. (2020) and Oliveira et al.

(2020a)

Crude protein 19–56 Becker (2007) and Oliveira et al.

(2020a)

Ashes 1–3 Oliveira et al. (2020a)
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carboxyl and an amino) and are building blocks of pro-

teins. Algae (microalgae and seaweeds) are responsible for

the synthesis of essential amino acids in the aquatic envi-

ronment that are transferred to higher links in the food

chain (Romero Garc�ıa et al. 2012). Commonly, 17 a-amino

acids are reported in T. obliquus cells (Table 4), of which

Tryptophan is the only essential unreported amino acid

(Omar 2002; Osman et al. 2004; Liu et al. 2019c).

The immobilized T. obliquus cells exhibited higher per-

formances than that of free form in the ammonia biocon-

version, from wastewater, into protein (Liu et al. 2019c). In

addition, some amino acids contents varied according to

nutritional metabolism, that is Asp decreased only under

mixotrophic cultivation and Lys increased only under pho-

toautotrophic cultivation. These results indicated that these

two amino acids were greatly sensitive to the type of carbon

source and these changes might be explained by its specific

metabolic pathways. The contents of the others amino acids

had no regular changes compared with the control (BG-11

medium, sodium nitrate as nitrogen source), which con-

firmed that these kinds of amino acid in T. obliquus were

not sensitive to nitrogen source.

Similarly, Piasecka et al. (2020) confirmed the effect of

nutritional metabolism on protein content of T. obliquus.

The authors showed that T. obliquus cells had high-protein

content in the mixotrophic cultivation compared to pho-

toautotrophic and photoheterotrophic cultivations using

molasse as carbon source. The control of metabolism and

targeting the metabolic pathways towards synthesis and

accumulation of specific amino acids can be an opportunity

for development of food and feed industries using the

T. obliquus biomass.

Afify et al. (2018) have highlighted the importance of

T. obliquus protein hydrolysates as antioxidant and antivi-

ral agents. This research group has shown that the quality

of amino acids extracted from T. obliquus cells can be

improved from treatments with specific enzymes. Amino

acids such as methionine and arginine showed excellent

Table 3 Fatty acids profile of Tetradesmus obliquus

Fatty acid Common name Representations % (w/w)

Saturated

Tetradecanoic Mirystic C14:0 0–1.7

Hexadecanoic Palmitic C16:0 9.2–29.5

Octadecanoic Estearic C18:0 0.2–1.2

Docosanoic Behenic C22:0 0.2–1.7

Tetracosanoic Lignoceric C24:0 0–0.9

Monounsaturated

cis-9-tetradecenoic Myristoleic C14:1c9 or

C14:1x5

0–0.5

cis-9-hexadecenoic Palmitoleic C16:1c9 or

C16:1x7

0.1–13–6

cis-9-octadecenoic Oleic C18:1c9 or

C18:1x9

3.0–41.1

cis-9-eicosenoic Gadoleic C20:1c9 or C

20:1x11

0–0.9

Di-unsaturated

cis-7, cis-10-

hexadecadienoic

– C16:2 c7, c10

or C16:2x6

0.2–0.7

cis-9, cis-12-

octadecadienoic

Linoleic (L) C18:2 c9, c12

or C18:2x6

0.1–15.7

Tri-unsaturated

cis-6, cis-9, cis-12

octadecatrienoic

c-linolenic C18:3 c6 c9

c12 or C

18:3x6

1.2–3.8

cis-9, cis-12, cis-15

octadecatrienoic

a-linolenic (Ln) C18:3 c9 c12

c15 or

C18:3x3

4.5–41.2

Polyunsaturated

cis-6, cis-9, cis-12,

cis-15

octadecatetraenoic

Stearidonic C18:4 c6 c9

c12 c15 or

C18:4x3

0.7–4.4

cis-5, cis-8, cis-11,

cis-14, cis-17

eicosapentaenoic

Eicosapentaenoic

(EPA)

C20:5 c5 c8

c11 c14 c17 or

C20:5x3

0.1–53.6

cis-4, cis-7, cis-10,

cis-13, cis-16, cis-

19

docosahexaenoic

Docosahexaenoic

(DHA)

C22:6 c4 c7

c10 c13 c16

c19 or

C22:6x3

0–2.1

According to Makulla (2000), Salama et al. (2013), Girard et al. (2014),

Shen et al. (2018), Oliveira et al. (2020b) and An et al. (2020).

Table 4 Amino acids profile of Tetradesmus obliquus

Amino acid Abbreviation

(3-; 1-letter)

Polarity Classification Content (g/

100 g

biomass)

Alanine Ala; A Nonpolar Nonessential 4.8–5.14

Arginine Arg; R Basic

polar

Nonessential 3.85–6.4

Aspartate/

Aspartic

acid

Asp; D Acid

polar

Nonessential 6.99–9.9

Cystine Cys; C Nonpolar Nonessential 0.08–0.6

Glutamate Gln; Q Polar Nonessential 6.01–10.8

Glycine Gly; G Nonpolar Nonessential 2.92–5.8

Histidine His; H Basic

polar

Essential 1.86–2.9

Isoleucine Ile; I Nonpolar Essential 4.1–4.97

Leucine Leu; L Nonpolar Essential 5.44–8.5

Lysine Lys; K Basic

polar

Essential 4.24–7.4

Methionine Met; M Nonpolar Essential 1.2–2.2

Phenylalanine Phe; F Nonpolar Essential 3.12–6.5

Proline Pro; P Nonpolar Nonessential 3.28–4.1

Serine Ser; S Polar Nonessential 2.72–3.2

Threonine Thr; T Polar Essential 2.95–3.2

Tyrosine Tyr; Y Polar Nonessential 2.07–3.1

Valine Val; V Nonpolar Essential 3.2–3.91

According to Omar (2002), Osman et al. (2004) and Liu et al. (2019a).
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antioxidant activity and high antiviral activity against Cox-

sackie B3 virus. The authors also point out that further

studies are needed to demystify the antiviral mechanisms of

these hydrolysates.

Pigments

Pigments are photosynthetic essential compounds that par-

ticipate in the light-harvesting process and protect the pho-

tosynthetic apparatus from photo-oxidative damage

(Bartley & Scolnik’ 1995). The most abundant pigments in

T. obliquus are the chlorophylls (a and b) and lutein (Wilt-

shire et al. 2000; Table 5). T. obliquus also contains signifi-

cant amounts of other relevant carotenoids (b-carotene
and astaxanthin) widely used in various industries, such as

aquaculture and pharmacology (Guedes et al. 2011b).

The lutein productivity of T. obliquus FSP-3 was

increased three times (from 1.39 to 4.15 mg L�1 day�1) at

300 lmol photons m�2 s�1 irradiance provided by a fluo-

rescent lamp (Ho et al. 2014). The lutein can prevent or

ameliorate cardiovascular diseases (Dwyer et al. 2001), con-

tribute partly to the induction of some tumour cells growth

inhibition (Gong et al. 2018) and lead to improvement of

visual episodic memory in young and middle-aged adults

(Nouchi et al. 2020). Although the astaxanthin market

(from Haematococcus pluvialis) is larger (over $240 million

per year) than that of lutein, its consumption of related

products reached $150 illion in the USA (Cer�on-Garc�ıa

et al. 2008). Moreover, lutein production is expected to

grow rapidly at 3.6% annually (Sun et al. 2016a).

Environmental applications

Apart from the application of T. obliquus for biofuel pro-

duction, this species has gained increasing attention from

researchers and industrial developers in recent years as bio-

material and as biocomponent for the formulation of

functional composites for emerging environmental applica-

tions such as in wastewater treatment (Mata et al. 2012),

biosensors development (Wei et al. 2010), plant nutrition

(Renuka et al. 2016) and aquaculture (Tejido-Nu~nez et al.

2019).

Wastewater treatment

The pollution of available potable water in the world is one

of the main environmental problems today. A large portion

of water contamination is a result of the disposal of excre-

ment conveyed in sewers in aqueous effluents and inappro-

priate disposal from industrial waste which include dyes,

heavy metals, pharmaceutical products etc. These sub-

stances interfere with the ecological cycle of species and

alter the availability and quality of vital elements for living

beings. It has been postulated that the world will face a

40% water shortage by 2030 (Sun et al. 2016b) thus posing

a serious challenge for sustainable development.

Although the conventional wastewater treatment tech-

nologies (such as sedimentation, coagulation, aerobic acti-

vated sludge-based treatment, nitrification-denitrification

and phosphorus removal) are widely used, they have several

limitations and drawbacks like high energy consumption,

carbon emission, excess sludge discharge and considerable

cost. Microalgae-based wastewater treatment system

attracted the attention in the recent years due to their car-

bon sequestration potential, utilization of algal biomass for

production of biofuel, feed, pigments and other value-

added, combined with its high availability and low cost. In

particular, T. obliquus has been used for various types/

levels of wastewater treatments and its resulting biomass

has been largely used for biofuel production. It is evident

from Table 6 that this species shows efficacy in removing

nitrogen and phosphorus from the aqueous medium under

different pollution conditions.

Various strategies have been developed for wastewater

treatment using T. obliquus as biomaterial and biocompo-

nent of functional composites. Urrutia et al. (1995) investi-

gated potential of T. obliquus immobilised on polyurethane

and polyvinyl foams for nitrogen removal of nitrogenous

fertilizer wastewater. The investigation showed that the

nitrogen-starved cells of T. obliquus were highly efficient for

nitrogen removal. T. obliquus had the best performance in

removing sulphate (36%) from wastewater, compared to

microalgae such as Chlorella vulgaris (34%) and Oocystis

minuta (27%) (Ajala & Alexander 2020). Furthermore,

Ahmad et al. (2019) presented that T. obliquus can remove

about 94% phosphate from municipal wastewater as a result

of the combined action between absorption capacity of its

cells, and volatization and precipitation in the medium.

Scarponi et al. (2021) analysed the ability of C. vulgaris and

T. obliquus to remove ammonia from solid waste. The

Table 5 Pigments profile of Tetradesmus obliquus

Pigment µg g�1 (w/w) References

Astaxanthin 22–75† Mansouri and Hajizadeh (2018)

Chlorophyll

a

800–18 000 Maroneze et al. (2019) and Oliveira

et al. (2020a)

Chlorophyll

b

895–4348 Maroneze et al. (2019) and Singh et al.

(2020)

Lutein 63–3630 Ho et al. (2014) and Maroneze et al.

(2019)

Neoxanthin 36–322 Maroneze et al. (2019)

Violaxanthin 2–109 Maroneze et al. (2019)

b-Carotene 7–560 Maroneze et al. (2019) and Singh et al.

(2020)

†In fresh weight.
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authors showed that T. obliquus and C. vulgaris can remove

98 and 99% of ammonia available in sludge, respectively.

Renuka et al. (2016) reported that wastewater grown

T. obliquus microalgal biomass can be utilized as a biofer-

tilizer. In this study, the researchers showed that the

wastewater grown microalgae-based biofertilizer has higher

yield as compared to artificial medium. T. obliquus bio-

mass, produced in brewery wastewater, produced 67.1 mL

of bioH2 (in terms of volatile solids) after dark fermenta-

tion. In addition, other energy products were also obtained

from this biomass: bio-oil (64%), biochar (30%) and bio-

gas (6%) (Ferreira et al. 2019). Similarly, Mata et al. (2012)

reported the biomass yield 0.9 g L�1 day�1 when

T. obliquus was cultivated in brewery wastewater for

9 days. Chemical oxygen demand (COD) and total nitro-

gen (TN) removal efficiency of 57.5% and 20.8% were

reported, respectively. It is evident from the various studies

that T. obliquus has potential to grow in different types of

wastewater (low- or no-cost culture media) and produce

bioproducts, but these studies are limited to batch- or

pilot-scale operations.

Recently, Cengiz Sahin and Aksu (2017) analysed the use

of T. obliquus biomass (in the form of activated carbon) as

an adsorbent material of dyes in the textile industry. They

reported that chemically activated carbon removes three

times the amount of dye removed with its use in physical

activation form. The authors attributed that the better

results obtained with chemical activation of biomaterial are

related to its superior surface area and total pore volume.

The ability of T. obliquus to adsorb dyes has also been eval-

uated for the removal of methylene blue. T. obliquus bio-

mass (1.2 g L�1) was treated with CaCl2 to obtain a fast

adsorption of 70% of the dye, after 10 min of adsorbent

action (Ghafar et al. 2017).

The Kotzabasis’ group (Papazi et al. 2012) showed that

T. obliquus can be used to degrade phenolic compounds

present in wastewater generated from the manufacture of

various products such as disinfectants, antiseptics, fumi-

gants, medicines, synthetic resins, photographic developers,

paint and varnish removers, explosives etc. These research-

ers reported that degradation of toxic phenolic compounds

in wastewater was accompanied with an increase in the bio-

mass of T. obliquus. These findings represent a significant

aspect for biotechnological applications of this species, as

discussed above.

Other works, such as that of Monteiro et al. (2009),

reported the application of T. obliquus in removal of heavy

metals. Generally, adsorption of heavy metal molecules

occurs from the electrostatic attraction between the oppo-

site charges of the functional groups present in the cell wall

of T. obliquus and the metallic/heavy metal pollutant.

Escapa et al. (2017) compared the efficiency of T. obliquus

with C. vulgaris for the removal of by-products of pharma-

ceuticals – paracetamol and salicylic acid. The authors con-

cluded that T. obliquus is more efficient than C. vulgaris

for removing paracetamol (>40% versus >21%) and sali-

cylic acid (>93% versus >25%) in batch culture, under the

same environmental conditions. Likewise, Santos et al.

(2017) found that T. obliquus removes about 98% (in batch

culture) of the by-products of the diclofenac production,

while C. vulgaris did not show considerable ability to

remove this substance.

Aquaculture

Among the various applications, a large sector of microal-

gae biomass is intended for the feeding of aquatic organ-

isms (Neori 2011). Aquaculture is considered the fastest

Table 6 Main characteristics of Tetradesmus obliquus cultivations in various types of wastewater

Type of

WW

COD TN TP Cultivation

period (d)

Biomass

yield

(g L�1)

Lipid

(%)

Ref.

Initial

(mg L�1)

%

removal

Initial

(mg L�1)

%

removal

Initial

(mg L�1)

%

removal

Brewery 3635 57.5 54 20.8 – – 14 0.9 – Mata et al. (2012)

Piggery – – 1280 58 4.3 69 40 0.02 27 Ji et al. (2013)

Municipal – – 21.8 97 2.15 82 6 0.005 19.7 Ji et al. (2015)

Municipal – – 40 99 6.41 99 14 1.46 36.26 Zhang et al. (2014)

Municipal – – 20.09 – 10.67 – 25 1.20 49 �Alvarez-D�ıaz et al.

(2015)

Raw

sewage

320.07 76.3 52.23 98.54 8.47 97.99 15 – 28.36 Gupta et al. (2016)

Poultry 3694.7 96 122.7 97.1 27.9 99.3 – 3.8 11.4 Oliveira et al. (2019)

Municipal 141.25 – 63.35 95 5.41 81 – 0.92 16 Han et al. (2019)

Aquaculture 33 88.9 32 94.4 1.85 90.2 5 0.25 – Liu et al. (2019b)

Aquaculture 96 42 51.51 78.4 8.82 100 14 1.25 30.85 Ansari et al. (2019)

COD, chemical oxygen demand; TN, total nitrogen; TP, total phosphorus.
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growing and most efficient food production sector; in fact,

the production of aquatic organisms has already surpassed

fishing (FAO 2018). Hence, T. obliquus can play impressive

roles in aquaculture industry. Tejido-Nu~nez et al. (2019)

reported that the growth of T. obliquus in non-sterile

wastewater from aquaculture recirculation systems was

22% more higher than C. vulgaris. Also, presence of proto-

zoans negatively affected the growth of C. vulgaris, but not

that of T. obliquus, which was attributed to the potential of

T. obliquus to form cenobia in response to the infochemi-

cals released by herbivorous pressure (a subject already

commented in section History, taxonomy and morphol-

ogy).

Biofloc technology is an undisputed sustainable alterna-

tive, especially for fish larviculture and shrimp farming

(Crab et al. 2012), however, as it is a relatively newer tech-

nology, some improvements are still needed. Addition of

T. obliquus and C. vulgaris has been shown to have positive

effects on the immune response of Nile tilapia grown in

biofloc systems, the technology was named Autotrophic

biofloc technology (ABFT) (Jung et al. 2017). Nile tilapia’s

biochemical composition raised in ABFT also showed

higher lipids and proteins content than those reared in the

conventional system, and this fact may be a response by the

microalgae provide complementary nutrients more efficient

in the enhancement of the biochemical composition of fish

than those provided by bacteria (Sandhya et al. 2020).

Apart from exploiting various measures to improve the

techniques used in aquaculture, exploring the processes

that use by-products is also important in order to reduce

production costs. This is more important since the aqua-

culture feed corresponds to about 50% of the total cost

(Goddard 1996). A recent study evaluated the use of resid-

ual biomass (defatted biomass) of T. obliquus as a source of

protein and other nutrients for Rhamdia quelen (Teleostei,

Pemelodidae). The findings of this study revealed that

defatted biomass prevented oxidative damage in brain via

an enhanced antioxidant response (Marques et al. 2019).

The recovery of other metabolites would improve the sus-

tainability and economy of bioprocesses in the microalgae

chain.

Recently, Piasecka et al. (2020) exploited the application

of agro-industrial by-products in culture of T. obliquus for

the production of high levels of EFAs, that is EPA and

DHA. The cultivation technique of the species was related

to the adopted nutritional strategy which proved to be low-

cost and environmentally friendly, compared to other ways

of obtaining them. These lipids are considered of great

importance in biotechnology and aquaculture industries

due to their role in the treatment of heart disease, cancer,

type 1 diabetes and other diseases and also produce feed

(Mendes et al. 2009). It is important to note that fish oil is

the main source of EFAs. However, the use of fish oil to

produce feed is unsustainable and, for this reason, microal-

gae are the most suitable source of EFAs for the sustainable

aquaculture development.

Biosensors

Microalgae cells, owing to their sensitivity to environmental

variables, are also used for developing biosensors for detect-

ing pollutants in aqueous media (Becker 2007). T. obliquus

has gained attention of researchers for development of

biosensors for detection and monitoring of organic mole-

cules in water. These sensors have been presented as an

alternative to conventional analytical methods which are

generally expensive, time-consuming, and difficult to adapt

for the detection of emerging pollutants such as pesticides

and by-products of drug production (Chouler et al. 2019;

Gonzalez & Lorenzo 2019).

Gonzalez and Lorenzo (2019) presented a cost-effective

photosynthetic biological fuel cell (pBFC) as an electro-

chemical biosensor for monitoring water quality in real

time. The authors developed a cathode using T. obliquus

cells and evaluated its potential for the detection of pesti-

cides in water; the resulting anaerobic sludge from the pro-

cess was disposed at the anode. The results obtained with

T. obliquus cell-based cathode were compared with cathode

made of graphite and indium tin oxide (ITO) surface to

evaluate the relative efficiency. The T. obliquus pBFC device

showed excellent sensitivity and fast response to environ-

mental changes. The electrical response of this devices

exhibited a photosynthetic cyclic pattern, characterized by

an increase in electrical current during the day and a

decrease in the night period. Moreover, the output electri-

cal current showed a linear dependence on the level of oxy-

gen dissolved in the cathode during the electrochemical

process. This result is an indication that the T. obliquus

pBFC device also has great potential to be used as a dis-

solved oxygen sensor in applications that require such

monitoring.

Chouler et al. (2019) studied photosynthetic sensors

based on microalgae grown in wastewater. The authors

explored the use of T. obliquus in microbial fuel cells and

for the first time developed a portable bioelectrochemical

device for the in situ detection of formaldehyde (a toxic

substance resulting from the oxidation of organic matter)

in water. The devices work only in the presence of light,

have a fast electrical response depending on the formalde-

hyde concentration, with almost 70% sensitivity.

T. obliquus has been tested for the monitoring of heavy

metals such as mercury, zinc and cadmium and their per-

formance were far superior to other potential species such

as Chlorella pirenoydosa and Chlamydomonas reinhardtii (Li

et al. 2012). These results make T. obliquus a potential can-

didate for the development of new devices for water
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biomonitoring with fast response, low cost and environ-

mentally friendly applications.

Biofuels

Third-generation biofuels derived from microalgae are

considered as an alternative to fossil fuels and biofuel

crops such as soybeans, corn and other lignocellulosic

raw materials (Safi et al. 2014; Goh et al. 2019).

Microalgae can produce about 150 000 L of oil per hec-

tare, which is three times higher than other oil feedstock

(Li et al. 2020). Although much progress has been made,

the production cost of biofuel from microalgae is still

high (up to 20 times more expensive than biodiesel

derived from soy, for example) and thus are less popular

than other biofuels (Milano et al. 2016; Severo et al.

2019). However, soybean production increases at a

slower rate than expected, and, thus, competition of

microalgae with other oil crops may be still viable due

the other high-value by-products present in microalgal

biomass (such as pigments) (Chia et al. 2018; Severo

et al. 2019). As previously mentioned, T. obliquus has

the potential to produce high amounts of lipids (which

can be transesterified for the biodiesel production) and

carbohydrates (which can be fermented for the bioetha-

nol production). Although some microalgae produce

high amounts of lipid and carbohydrates, it does not

necessarily mean high production of biodiesel and

bioethanol, respectively. It was reported that T. obliquus

could achieve 37.92% ethanol conversion (El-Sheekh

et al. 2014) and 90.81% biodiesel-conversion (Guldhe

et al. 2015) rates. The residual biomass after lipid or

carbohydrate extraction is rich in proteins.

One of the most promising alternatives that have been

discussed in algal biotechnology field to improve the yield

of these valuable biochemical compounds is to control the

cell growth of the species from its interaction with nanoma-

terials (materials whose dimensions are on the order of

10�9 m). As an example, He et al. (2017) showed that

exposure of T. obliquus cells to low concentrations of iron

(III) oxide nanoparticles (nano Fe2O3) improved the cell

growth and enhanced synthesis of chlorophyll, protein and

lipids. Interestingly, the lipid content of the cells exposed to

nanoparticles was ~45% higher than control samples. This

option of use of nanoparticles can serve as a potential alter-

native to the nitrogen-depletion technique since the inter-

action with the nanoparticles does not negatively affect the

biomass growth (and consequently the overall lipid yield).

On the other hand, a majority of nanoparticle-based prod-

ucts are toxic to aquatic organisms (Alves da Silva et al.

2018). Considering this fact, the use of nanoparticles can

compromise the sustainability of biofuels from microalgae.

Consequently, there is a need for continuing research, via

eco-friendly routes (such as wastewater treatment to pro-

duce biomass and biorefinery models) to reduce mainly the

harvesting cost.

Biological activities

The growing attention to functional food has driven huge

research into microalgae biotechnology (Dantas et al.

2019). Microalgae are a promising source of bioactive com-

pounds for new food products, which can be used to

enhance the value-added of foods due to their potential

anticancer, anti-diabetes, anti-inflammatory and antioxi-

dant activities (Lauritano et al. 2016; Novovesk�a et al.

2019).

The supercritical fluids extraction (SFE) offered advan-

tages in the extraction of vitamins from T. obliquus bio-

mass. The phylloquinone (vitamin K1) content was higher

in supercritical conditions and the menaquinone-7 (a

homologous of vitamin K2) was isolated, which, otherwise,

cannot be recovered by using traditional extraction proce-

dures (Chronopoulou et al. 2019). SFE has been shown to

be an efficient and clean technology to recover valuable

components from microalgal biomass. However, high cost

and scale up challenges impede the use of SFE in large-scale

operations (Yen et al. 2015).

Montone et al. (2018) reported 25 sequenced peptides

with potential antioxidant and ACE (angiotensin-convert-

ing enzyme) inhibitory activities were found in T. obliquus

biomass. In particular, four of these peptides exhibited high

DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging

activity (ranging from 56 to 70%). In addition, ACE-in-

hibitory activities reached up to 80% activity in one of

these peptides.

Protein hydrolysates from T. obliquus biomass with

papain (41.41%) and trypsin (40.62%) showed the highest

antioxidant capacities among the hydrolysates evaluated.

Moreover, all protein from T. obliquus and its hydrolysates

exhibited high antioxidant capacity (up to 68.23%) using

the 2,20-azinobis 3-ethyl-benzothiazoline-6-sulphonate

(ABTS) radical scavenging method (Afify et al. 2018).

According to Mare�cek et al. (2017) both DPPH and ABTS

methods are efficient tool for determination of antioxidant

activity. In addition, Afify et al. (2018) also reported antivi-

ral activity of proteins hydrolysed against the Coxsackie B3

virus, a pathogenic enterovirus that triggers gastrointestinal

diseases to full-fledged pericarditis and myocarditis.

T. obliquus protein hydrolysates exhibited inhibitory effect

on Coxsackie B3 Virus (66%) at 100 lg mL�1. The mecha-

nisms behind action of the proteins hydrolysed were mainly

attachment inhibition (69.6%), penetration inhibition

(66.5%) and adsorption inhibition (53.5%).

Tetradesmus obliquus polysaccharides extracted under

hot and cold conditions also presented antiviral activities
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against four virus strains (HCV (hepatitis C virus), HSV

(herpes simplex virus), Coxsackievirus and Rotavirus)

(Nasser et al. 2018). T. obliquus extract at 1.5 mg mL�1 (a

nontoxic dose for some human cells) showed 40, 30, 10

and 40% reduction of the HCV, Rotavirus, HSP and Cox-

sackievirus, respectively. In addition, these authors

reported that T. obliquus extract could also inhibit growth

in 50.4% of human liver cancer cells (Hep G2) under

in vitro assays.

Providing a diet enriched with 50% biomass of

T. obliquus reduced the triglycerides content (70%),

atherogenic index (80%) and serum glucose concentration

(42%) compared to a diet without this microalga (based on

casein). These results show that T. obliquus can represent a

suitable source of functional and nutraceutical foods for

potential treatment and prevention of dyslipidemia and

diabetes (Silva et al. 2020). However, these authors did not

correlate the improvement on blood parameters with speci-

fic biocompounds from the T. obliquus biomass.

Although some specific microalgae molecules (e.g. fucox-

anthin, amphidinols, astaxanthin, etc.) have attracted more

attention, and consequently, more studies have been con-

ducted on these molecules, few biological activity assays

conducted with T. obliquus showed an under-explored

potential for the pharmaceutical industry of this microalga.

Tetradesmus obliquus-refinery concept

The concept Tetradesmus obliquus-based biorefinery

(Fig. 2) is similar to a petroleum refinery which comprises

of various process and unit operations (Safi et al. 2014).

Algae-based biorefinery are integrated systems aimed at the

reduction of cost and environmental impacts, for use of

CO2 and wastewater, and production of biomass and other

value-added products. Recent advances in cultivation tech-

niques, culture medium and development of low-cost

Figure 2 Tetradesmus obliquus-refinery concept.

Figure 3 Trend in publications from 1950 to 2019.
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photobioreactors based on linear-route production pro-

cesses are insufficient to improve the economy of microal-

gae products. The principles of the circular chemistry can

reinvent business and production models by integrating

various processes into a circular zero-residue chain (Serr�a

et al. 2020; Oliveira et al. 2020d).

The integrated use of the various metabolites from

microalgal biomass is a fundamental step for the microal-

gae chains to become economically competitive with the

biofuels, pharmaceuticals and aquaculture industries, since

in many cases, only interested in a single compound or

group of compounds produced (e.g. astaxanthin in H. plu-

vialis, phycocyanin and protein content in A. platensis,

b-carotene in D. salina etc.).

Furthermore, the emerging use of ‘omics’ approaches

(such as genomics, transcriptomics, proteomics, lipidomics

and metabolomics) can produce valuable massive data that

could be deciphered using computational tools and soft-

ware. T. obliquus has the complete mitochondrial DNA

sequence published in 2000 (Nedelcu et al. 2000) and a

draft whole-genome shotgun sequencing in 2017 (Carreres

et al. 2017). This information can be used in predicting a

cell model to optimize the synthesis of specific compounds.

The concept of microalgal biorefinery is relatively new and,

therefore, abundant literature on the subject is not avail-

able. Algal refinery approaches and cost-benefit analysis

must be considered in future works.

Bibliometric analysis

In order to highlight the interest in T. obliquus into

microalgae cultivations, a bibliometric analysis has been

proposed. The information of scientific publications was

based on Elsevier Scopus database (obtained on January 31,

2020). A detailed search was carried out using [TITLE-

ABS-KEY (Scenedesmus); (Scenedesmus) AND (obliquus);

Table 7 Top 10 journals that published documents on Tetradesmus

obliquus

Journal n Impact factor

(2019)

CiteScore

(2019)

Bioresource Technology 80 7.539 12.8

Algal Research 50 4.008 6.7

Journal of Applied Phycology 24 3.016 5.1

Chemosphere 21 5.778 8.8

Environmental Science and

Pollution Research

19 3.056 4.9

Bioprocess and Biosystems

Engineering

17 2.419 4.4

Ecotoxicology and Environmental

Safety

16 4.872 6.2

Aquatic Toxicology 15 4.344 7.2

Journal of Hazardous Materials 13 9.038 13.1

Science of the Total Environment 13 6.551 8.6

Figure 4 Documents by subject area per decade.
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(Acutodesmus) AND (obliquus); (Tetradesmus) AND

(obliquus)]. The three specific searches were categorized as

T. obliquus. The search results in 5434 and 2517 documents

to Scenedesmus and T. obliquus (grouping the three taxo-

nomic results) after limiting the search timescale from 1950

to 2019. In addition, three other parameters are analysed:

(i) top ten journals in number of documents, (ii) number

of documents by subject area, and (iii) main keywords

found in the documents. The records obtained were conve-

niently processed using spreadsheets that were previously

organized using the OpenRefine software. A possible transi-

tion in the trends of the keywords reported in T. obliquus

studies was carried out using VOSviewer software (version

1.6.14).

There are a total of 2517 documents resulting from

search carried out on the Scopus platform which were com-

posed by 2376 articles (94.69%), 77 conference papers

(3.1%), 30 review (1.19%) and 34 others (1.35%). Most

documents were published in English (2351 ffi 93.27%),

Chinese (97 ffi 3.85%) and German (31 ffi 1.23%). In gen-

eral, about 50% of the publications on the Scopus platform

that have ‘Scenedesmus’ on the title, abstract or keywords,

are referred to the T. obliquus. Briefly, two trends in num-

ber of publications from 1950 and 2019 were observed

(Fig. 3).

The total number of publications, the impact factor from

the JCR (Journal Citation Reports) and the CiteScore from

the SJR (SCImago Journal Rank) of the top 10 journals are

listed in Table 7. Bioresource technology (80 documents)

and Algal research (50 documents) were the journals that

most published documents on T. obliquus. In contrast,

Journal of Hazardous Materials is the journal with the high-

est Impact Factor and CiteScore of this ranking.

When organizing the documents by subject area, catego-

rized by decade, it was possible to observe a change in the

research profile using T. obliquus (Fig. 4). In the 1950s, the

Figure 5 Word cloud representation of the main characteristics of documents on Tetradesmus obliquus.
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documents were predominantly composed by Agricultural

and Biological Sciences and Biochemistry, Genetics and Molecu-

lar Biology; these research fields were still representative until

the last decade analysed. Environmental Sciences subject area

showed a gradual growth over the analysed decades, and in

the 2010s it was leading (27.04%) among the other subject

areas. The growth of the Environmental Sciences subject area

is mainly due to studies related to CO2 mitigation, wastewa-

ter treatment and ecotoxicological approaches that have

become intense in the last two decades. The 4-fold increase

in the contribution of the Energy subject area (2.51% in

2000s and 10.25% in 2010s) is also notable, and it is due to

the growing concern about depletion of fossil fuels and the

need for new renewable energy sources (and microalgae are

advantageous in this field). Therefore, it is likely that Envi-

ronmental Sciences and Energy subject areas will continue to

increase the contribution of research in T. obliquus. In addi-

tion, research of T. obliquus was also frequent in Medicine,

Immunology and Microbiology, and Chemistry subject areas in

the decades evaluated.

In addition, the word cloud concept was utilized to

expose the main characteristics related to T. obliquus

microalgae in the spotlight (Fig. 5). In this analysis, key-

words ‘Scenedesmus’ (1077), ‘Scenedesmus obliquus’ (1004),

‘Acutodesmus obliquus’ (273), ‘Article’ (883) and ‘Nonhu-

man’ (712) were removed because they are clearly more fre-

quently reported in this field of research or are not

representative for this analysis. Keywords of the same

meaning (e.g. diatoms and Bacillariophyta) and/or plurals

had their values grouped. These documents mainly include

terms related to the microalgae cultivations and their appli-

cations such as ‘Biomass’, ‘Lipid’, ‘Wastewater’ and related

to ecotoxicological approach such as ‘Toxicity’, ‘Bioaccu-

mulation’, ‘Microcystis aeruginosa’ and ‘Daphnia spp.’. Nev-

ertheless, others microalgae species also appear in the word

cloud such as ‘Chlorella vulgaris’, ‘M. aeruginosa’,

‘S. quadricauda’, ‘Chlamydomonas reinhardtii’, ‘Chlorella

pyrenoidosa’ and ‘Chlorella sorokiniana’.

The keywords present in the documents of T. obliquus

published in the last decade were analysed and it is also possi-

ble to observe a transition of interest (Fig. 6). In mid-2010,

the documents were mostly studies related to photosynthesis

(chlorophyll and carotenoids); years later, mid-2013, the

interest was concern to ecotoxicology approach and

Figure 6 Keywords transition in documents on Tetradesmus obliquus.
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interactions with other microalgae species (Chlorella vulgaris

andMicrocystis aeruginosa) and with zooplankton (Daphnia).

Biofuels hotspot (biodiesel mainly) occurred in mid-2016.

Conclusions

This review reflects a broad image of current efforts to

develop technological packages for production of biomass,

biofuels and other emerging applications using the micro-

alga T. obliquus (which may also be applicable to other

microalgae species). It has also been proven that T. obliquus

can be managed to develop a low cost (or no cost) nutri-

tional regime complemented by highest growth rate, which

provides high biomass productivity. The findings regarding

the low-cost processing of biomass (flocculation and non-

drying methods) that favour the biodiesel produced using

T. obliquus also deserve to be highlighted. Nevertheless,

biorefinery models can optimize processes involving the

T. obliquus products.

It is necessary that the recent knowledge published is

used in futuristic (or short-term) industrial applications so

that T. obliquus products are highly competitive in differ-

ent markets. It is clear that considerable investment in tech-

nological development and technical training is still

needed, which needs to be carried out in a joint strategic

planning of the political and economic powers.
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