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RESUMO 

 Informações sobre a dinâmica espaço temporal das frotas pesqueiras vem sendo 

amplamente utilizada para inferir sobre diversos aspectos da ciência pesqueira, como na avaliação 

de padrões de distribuição de espécies, investigar impactos sobre habitats devido ao esforço 

pesqueiro, na distribuição das embarcações de pesca, entre outros. Neste trabalho descrevemos a 

distribuição espacial e a composição de captura de acordo das frotas artesanal e recreativa do 

Arquipélago de Fernando de Noronha, baseando-se em dados de GPS. Para descrição da 

distribuição espacial foi aplicado um modelo Oculto de Markov a fim de segmentar as trajetórias 

em diferentes atividades, denominadas estados comportamentais. Para validar a predição dos 

modelos foram utilizados dados de observador de bordo que acompanharam 20% das viagens 

monitoradas via GPS. Valores de acurácia sobre e subestimação da atividade pesqueira estimadas 

pela modelagem foram calculados através de matrizes de confusão. Além disso, foram aplicados 

modelos de florestas aleatórias para definir quais variáveis (banco de dados, período de 

interpolação, número de estados, família de distribuição dos passos e família de distribuição dos 

ângulos) eram mais importantes na acurácia, sobre e subestimação da pesca de acordo com 

modelos. De acordo com resultados de distribuição, ambas frotas ocupam áreas similares, 

tendendo a desempenhar a pesca em pontos tradicionalmente conhecidos pelos pescadores. No 

entanto, ainda que compartilhando zonas pesqueiras parecidas as composição e estrutura das 

capturas diferem-se. A frota artesanal concentra sua captura em indivíduos de tamanho médio, 

principalmente barracudas (Sphyraena barracuda) e peixe-rei (Elagatis bipinnulata), enquanto 

que a pesca esportiva captura peixes de tamanhos mais variados, sendo eles principalmente 

barracudas e tunídeos. Quanto a modelagem das trajetórias pesqueiras, de modo geral os modelos 

obtiveram bons valores de acurácia entre 58% e 79%. Além disso, sobre estimação e subestimação 

média da atividade de pesca ficaram em aproximadamente 21% e 6.5%, respectivamente. Segundo 

resultados das florestas aleatórias, o tipo de banco de dados, número de estados e período de 

interpolação foram consideras as variáveis mais influentes para variação da acurácia, sobre 

estimação e subestimação do estado de captura. Foi observado que os modelos tenderam a 

sobrestimar eventos de pesca em percursos com alta sinuosidade e alta velocidade. Em adição, 

modelos também subestimaram a pesca em porções da trajetória onde os barcos navegavam em 

linha reta e em velocidade moderada. Em relação ao número de estados, a adição de um terceiro 

estado comportamental não significou o incremento de um novo estado comportamental servindo 

apenas para o refinamento da estimação do estado de pesca. No geral, os resultados adquiridos 

nesse trabalho podem auxiliar o entendimento da dinâmica espacial das frotas pesqueiras de 

Fernando de Noronha, salientando importantes zonas de pesca que em sua maioria circundam os 

limites do Parque Nacional Marinho. As informações aqui apresentadas podem servir para melhor 

esclarecer as particularidades dos pescadores artesanais e recreativos de Fernando de Noronha e 

também na previsão de quais impactos alterações nas unidades de conservação poderiam causar 

na distribuição das embarcações.  

 

Palavras-chave: Frota pesqueira, Modelo Oculto de Markov, Modelagem comportamental, 

Trajetória pesqueira; Geolocalização.              



ABSTRACT 

Information on the temporal dynamics of the fishing fleets has been widely used to infer 

many aspects of fisheries science, such as the evaluation of species distribution patterns, 

investigate impacts on habitats due to fishing effort, in distribution of fishing vessels, among 

others. In this work we described the spatial distribution and catch composition of the artisanal 

and recreational fleets of the Fernando de Noronha Archipelago, based on GPS data. For the 

description of the spatial distribution, a Hidden Markov model was applied in order to segment the 

trajectories in different activities, called behavioral states. Onboard observer’s data from 21% of 

the trips monitored via GPS were used to validate the prediction of the models. Values of accuracy 

over and underestimation of fishing activity estimated by the modeling were calculated through 

confusion matrixes. In addition, random forest models were applied to define which variables 

(subset, interpolation period, number of states, step distribution family and angular distribution 

family) were most important in the accuracy, over and underestimation. According to distribution 

results, both fleets occupy similar areas, tending to perform fishing at points traditionally known 

by fishermen. However, although sharing similar fishing zones the composition and structure of 

catches differ among fishery fleet. The artisanal fleet concentrates its catch on medium-sized 

individuals, mainly barracudas (Sphyraena barracuda) and rainbow runner (Elagatis bipinnulata), 

while the recreative catches fish of more varied sizes, mainly barracudas and tunas. Regarding the 

modeling of the fishing trajectories, the models generally obtained good values of accuracy 

between 58% and 79%. In addition, the mean overestimation and mean underestimation of fishing 

activity were approximately 21% and 6%, respectively. According to results from the random 

forests, the subset, number of states and period of interpolation were considered the most 

influential variables for accuracy, overestimation and underestimation of catching state. It was 

observed that the models tended to overestimate fishing events in high sinuosity and high-speed 

segments. In addition, models also underestimated fishing in portions of the trajectory where boats 

sailed straight and at moderate speed. In relation to the number of states, the addition of a third 

behavioral state resulted in better accuracy results, but it did not mean the increment of a new 

behavioral state serving only to refine the estimation of the fishing state. In general, the results 

obtained in this work can help to understand the spatial dynamics of the fishing fleets of Fernando 

de Noronha, highlighting important fishing areas that mostly surround the limits of the Marine 

National Park. The information presented here may serve to better clarify the particularities of the 

artisanal and recreational fishermen of the archipelago and also in the forecast the impacts that 

changes in the conservation units could cause in the distribution of the vessels.  

Keywords: Fishing fleet, Hidden Markov Models, Behavioral modeling, Fishing track, 

Geolocation.   
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INTRODUÇÃO 

O crescente uso dos ambientes costeiros e marinhos por atividades antrópicas e a elevada 

exploração dos recursos aquáticos tem aumentado a pressão para o estabelecimento de medidas de 

manejo que visem ordenar a exploração desses ambientes de forma holística, considerando a 

conectividade entre os ambientes e organismos ali presentes (ARKEMA et al., 2006; DOUVERE 

e EHLER, 2009; ALONGI, 2009; JOHNSON et al., 2013). Dentre tais atividades as pescarias têm 

se destacado por afetar diretamente a composição e estrutura da comunidade marinha, podendo 

gerar perturbações no funcionamento dos ecossistemas (DAYTON et al., 1995; PAULY et al., 

2002; HAZEN et al., 2018). Além disso, o aumento no uso dos espaços marinhos tem causado 

conflitos de interesses, sendo estes agravados em regiões de fronteira devido à alta competição 

pela exploração dos recursos naturais, assim como em regiões insulares pela limitação espacial de 

áreas para uso antrópico, como no caso de Fernando de Noronha (Nordeste, Brasil) (DOUVERE, 

2008; LOPES et al., 2017). 

O Arquipélago de Noronha é um conjunto de ilhas oceânicas de origem vulcânica, situado em 

pleno Atlântico equatorial oeste (03°51’S / 32°25’W), cujo entorno possui 70% da sua área 

integralmente protegida pelo Parque Nacional Marinho (PARNAMAR), criado em 1988 

(BRASIL, 1988), onde atividades extrativistas como a pesca são proibidas e o turismo fortemente 

supervisionado. Os 30% restantes são zonas de exploração sustentável (áreas de proteção 

ambiental – APA), onde a pesca é permitida (ICMbio, 2016). A implementação de tais unidades 

de conservação causou diversos conflitos entre pescadores e órgãos ambientais já que zonas 

pesqueiras tradicionais próximas ao arquipélago ficaram inacessíveis aos pescadores, sendo a 

pesca permitida apenas além da isóbata de 50 metros de profundidade, sendo este o limite externo 

do PARNAMAR (IBAMA, 2017).  

Planos de manejo devem incorporar os conhecimentos e demandas das comunidades 

pesqueiras assim como se faz importante conhecer o uso efetivo do espaço que se quer proteger 

(SANCHIRICO et al., 2010; NUTTERS e PINTO DA SILVA, 2012). Para isso, iniciativas ao 

redor do mundo vem sendo implementadas a fim de monitorar as posições das embarcações de 

pesca via satélite (vessel monitoring system - VMS), sendo esta uma ferramenta crucial para o 

controle e compreensão da dinâmica pesqueira (e.g. DENG et al., 2005; LEE et al., 2010; CRESPO 

et al., 2018). Informações da caracterização da distribuição espaço-temporal das pescarias podem 
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servir como subsídio para definição de cotas de captura por zonas, períodos de defeso e aplicação 

de medidas de manejo espacialmente limitantes, como as áreas de proteção marinha (DINMORE 

et al., 2003; BABCOCK et al., 2005; ALLEN e SINGH, 2016). Informações sobre a contração ou 

dispersão na distribuição das embarcações pesqueiras podem ser utilizadas para identificar 

possíveis pressões exercidas sobre os recursos aquáticos (BERTRAND et al., 2007). O bacalhau 

do atlântico (Gadus morhua (Limneus, 1758)) é um exemplo onde métodos tradicionais de 

avaliação de estoques, como a captura por unidade de esforço (CPUE), foram ineficientes na 

detecção desse declínio populacional (HILBORN e WAITERS, 1992; HUTCHINGS, 1996;). A 

análise da distribuição espacial dos barcos pesqueiros ao longo do tempo pode ser usada com 

informação adicional para evitar interpretações errôneas da CPUE (hiperestabilidade). Mills et al. 

(2007), constatou a importância do uso da geolocalização das embarcações de pesca como 

instrumento de manejo pesqueiro e de planejamento espacial marinho. 

Pesquisas baseadas em dados de geolocalização vem utilizando e desenvolvendo modelos 

estatísticos para definir padrões espaço-temporais de pesca, diferenciar métodos e estratégias 

pesqueiras, definir tipos de trajetórias, identificar relações entre a atividade e a distribuição de 

espécies e/ou variações abióticas do ambiente aquático (WALTER et al., 2007; CHANG, 2011; 

RUSSO et al., 2016). Modelos são expressões específicas ou generalistas desenvolvidas para 

analisar/explicar hipóteses, muitas vezes denotados através de equações matemáticas (HALL, 

1988; HILBORN e MANGEL, 1997). Através da modelagem estatística estimam-se parâmetros a 

partir de dados observados, sendo possível inferir sobre populações ou processos (BURNHAM e 

ANDERSON, 2004; PAWITAN, 2008). Modelos podem ser descritivos, voltados a sumarizar de 

forma clara e sucinta os fatos, a fim de guiar o pesquisador até as informações mais relevantes 

sobre os dados (HAND et al. 2001). Passeios aleatórios, análises fractais, tempo de primeira 

passagem, entre outros, são exemplos já usados na modelagem da dinâmica espacial de 

embarcações pesqueiras (SCHICK et al. 2008; BERTRAND et al. 2015; SOUZA et al., 2016). 

Além disso, modelos podem ser inferenciais quando deduzem sobre determinado fator 

desconhecido, porém previsível, atribuindo probabilidades estimadas a partir de dados amostrais 

ou simulados, com o intuito de estimar parâmetros e explicar o fenômeno desconhecido (MARTIN 

e LIU, 2011).  
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Dentre as principais etapas na modelagem comportamental dos pescadores baseadas em dados 

de GPS, está a segmentação das trajetórias em diferentes atividades, como navegando, pescando 

ou procurando, as quais são denominadas estados comportamentais (JOO, 2013a). Um dos 

princípios utilizados para descriminar tais estados é a partir da derivação da velocidade entre dois 

pontos consecutivos de GPS e mudança de direção (ângulo) entre três registros consecutivos de 

GPS. A combinação de padrões como alta velocidade e baixa variação angular pode ser definido 

como um estado, enquanto que a baixa velocidade e grande variação de direção pode ser definido 

como um segundo estado, que posteriormente podem ser analisados e interpretados como viagem 

e pesca em se tratando de trajetórias pesqueiras por exemplo. Dentre os métodos utilizados para a 

definição de estados comportamentais os Modelos Ocultos de Markov (do inglês Hidden Markov 

Models - HMM) vem sendo bastante explorados devido a sua flexibilidade e por estimar arranjos 

probabilísticos que podem ser intimamente relacionados a estados não observados em uma viagem 

de pesca (ex.: pescando, navegando, etc.) (PEEL e GOOD, 2011; JOO et al., 2013; CHARLES et 

al., 2014). 

O Modelo Oculto de Markov é um processo estocástico duplo, que considera que determinada 

sequência discreta e finita de observações é gerada devido a um processo oculto composto por 

estados conhecidos, porém não observados (LEVINSON, 1983; BLUNSOM, 2004; HANDEL, 

2008). Muitos modelos são desenvolvidos para os mais diversos fins, como no reconhecimento de 

fala, restauração de imagens, sequenciamento de DNA, segmentação de trajetórias, entre outras 

aplicações (EPHRAIM e MERHAV, 2001). Na ecologia do movimento a aplicação dos HMMs 

foi utilizada por Joo et al. (2013), Langrock et al. (2012), Paddersen et al. (2011), entre outros. No 

presente trabalho segmentamos as trajetórias pesqueiras da frota do Arquipélago de Fernando de 

Noronha (Pernambuco, BR) utilizando o pacote moveHMM (desenvolvedores), elaborado para 

ambiente R, que implementa Modelos Ocultos de Markov e recursos adicionais para segmentação 

de estados comportamentais e seleção de modelos, principalmente voltado a dados de 

movimentação animal. Além disso, visamos inferir sobre a dinâmica espaço temporal da frota 

pesqueira do Arquipélago de Fernando de Noronha (Pernambuco, BR), denotando as 

características de cada modalidade e suas distribuições durante eventos de pesca. 
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OBJETIVO GERAL 

Inferir sobre a dinâmica espacial das frotas pesqueiras artesanal e recreativa do Arquipélago de 

Fernando de Noronha (Pernambuco, BR), baseando-se em dados de geolocalização. 

 OBJETIVOS ESPECÍFICOS 

• Descrever as frotas pesqueiras e a composição da captura das frotas pesqueiras atuantes no 

Arquipélago de Fernando de Noronha. 

• Identificar unidades comportamentais utilizando através de Modelo Oculto de Markov, 

baseando-se na distância e variação de ângulos entre registros consecutivos de GPS.  

• Identificar efeitos de variáveis, como período de interpolação, família de distribuições de 

probabilidade, entre outras, sobre a performance dos modelos. 

• Mapear a distribuição espacial das frotas pesqueiras, identificando principais zonas de 

pesca e estimando o esforço de uma maneira espacialmente explicita. 
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Description and movement modeling of the fishery off Fernando de Noronha Archipelago 

INTRODUCTION 

Changes in fishery dynamic is one of the most unpredictable factors affecting management 

plans, and the lack of information about the distribution of fishing fleets during the implementation 

of management and conservation actions can lead to inefficient results (WILEN et al., 2002; 

FULTON et al., 2011). Since the acquisition of stock information through scientific surveys is 

limited due to high costs, data from fishery fleets are the major source of knowledge about fisheries 

resources (CAMPBELL, 2015; COSTELLO et al. 2016; PAULY and ZELLER, 2016).  In the last 

decades, data on fishing vessels movements have been also used to estimate the impacts on fish 

resources (e.g. RIJNSDORP et al., 1998; POSEN et al., 2014), the effects of management actions 

(e.g. DINMORE et al., 2003; MURAWSKI et al., 2005; WALKER; BEZ, 2010; JOO et al., 2015;), 

to estimate a spatially explicit fishing effort (e.g. RIJNSDORP et al., 2001; MILLS et al., 2007), 

to infer the spatial distribution of fisheries resources (e.g. BERTRAND et al., 2004; BERTRAND 

et al., 2008). The emerging need for an ecosystem-based management (EBM) tools have bring to 

spotlight the importance of including high spatial-temporal resolution data in ecosystems 

management; in particular, the dynamic of fishermen spatial behavior, which influences the 

dynamics of natural aquatic resources, has grown concerns (FAO, 2003; BRANCH et al. 2006) 

Data on fishermen spatial behavior increased in the last decades since new and more 

sophisticated tracking devices have become available for scientific purposes, causing the increase 

in diversity, quality and size of datasets (PATTERSON et al., 2008; VERMARD et al. 2010). To 

process these datasets and model fishermen behaviours, there has been a need for developing or 

refining existing statistical approaches, then. many different methods have been explored 

(CAGNACCI et al. 2010; HEBBLEWHITE and HAYDON, 2010). A major point in the 

description of fishermen dynamic is the definition of behavioral modes or states, which consists in 

the segmentation of a fishing trip into different activities; fishing, sailing, setting the gear, etc. 

(JOO, 2013). Nowadays, there are two tendencies in the movement ecology investigation, first the 

use of complex statistical models which is a problem for the integration of ecologists in the field 

and second the use of simplistic models that could lead to erroneous conclusions (PATTERSON 

et al., 2017). 



 

21 
 

  Using simple thresholds on speed has been the most widely used approach (LEE et al. 

2010), yet this may produce large rates of error in the estimation of fishing events (e.g. 180% of 

overestimation, see Bertrand et al. 2008). Alternatively, statistically more grounded approaches, 

and possibly supervised (cases where a validation sample is available), were then used to identify 

those states, such as artificial neural networks by Bertrand et al. (2008) and Joo et al. (2011). More 

recently, other machine/statistical learning features have appeared as an option to deal with 

scenarios where the fishing state duration is smaller than the polling period of the VMS record, 

however those supervised methods are suitable only for large datasets (DE SOUZA et al. 2016; 

O’FARRELL et al. 2017). The Hidden Markov Models (HMM) have attracted attention as tool for 

animal behavior modelling, probably, due to its flexibility (MICHELOT et al. 2016). In the present 

study, we used HMM that belongs to a special group of state-switching models commonly used to 

decompose trajectories into different underlying states. It considers a finite number of states 

(hidden underlying process) such as, fishing traveling or searching, and the movement metrics 

correspond to the explicit observed variable of the model (tuning angle and speed) (LANGROCK 

et al. 2012; MCKELLAR et al. 2015). Moreover, it considers that the present state (t) depends 

only on the previous (t-1), ignoring all process preceding t-1, as stated in the Markovian chain 

properties (RABINER, 1989; ROSENBLATT, 2012; SUEN, 2014) (Further detailed on methods). 

Worldwide studies have implemented the HMM in order to identify the behavioral modes along 

fishing trip tracks, such as Joo et al. (2013), Gloaglen et al. 2013 and Vermard et al. (2010).  

In Brazil, there are few publications on dynamics of fishing behavior based on data from 

the national vessel monitoring program (PREPS), such as Zagaglia et al., (2009) and Lemos et al., 

(2016). However, those authors used the speed criteria to determine the behavioral modes of 

fishing boats. Those studies were applied in a southern purse seine fishing fleet that targets mullet 

(Mugil liza), as well as in a trawler fleet from Amazon, which targets catfish (Brachyplatystoma 

vaillantii), both interested on the management of the target specie. In the present study we aimed 

to describe the fishing activity in Fernando de Noronha because of the socio-economic importance 

of fishing activity and the presence of regulatory measures long stablished in the archipelago. 

Then, we utilized fishery geolocation data registered through GPS devices to infer about fishery 

fleet spatial dynamic. We segmented fishing GPS tracks using Hidden Markov Models to define 

fishing activities and validated the results by comparing them with activities recorded by on board 
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observers. In addition, we analyzed information about fishery catch composition to describe and 

compare the artisanal and recreative fleet from the island.  

METHODS 

Study Area and Local Fishery 

The study was conducted in the Fernando de Noronha Archipelago, an important group of 

tropical Atlantic islands that give biological support to their surrounding oligotrophic environment 

(Tchamabi et al., 2016). The archipelago is composed by 20 islands of volcanic origin emerged 

from the Mid-Atlantic Ridge located 345 km off the Brazilian Northeast coast (03° 51’ S; 32° 26’ 

W) (Maida and Ferreira, 1997). Since 1988, Fernando de Noronha has been protected by two 

management tools (Fig.1), first a National Marine Park (PARNAMAR), which is a no-take marine 

reserve where extractive activities are not allowed and recreational are heavily monitored. Second 

an Environmental Protected Area, which is a partially protected area, where fishing and other 

activities are permitted, but with regulatory restrictions (ICMbio, 2016).  

Two fishing fleets operate in the archipelago waters, one artisanal and one recreative, both 

targeting multiple species, but working with different fishing strategies. The artisanal fishing boats 

are equipped with a very basic set of tools. These fishermen use two fishing methods, one trolling 

handlines by the side of the boats while they are slightly drifting towards the archipelago, locally 

known as “pargueira”; the other trolling the lines by the stern of the boats, is known as “corrico”. 

Normally, they set two or three handlines with sardines (Harengula clupeola) or bigeye scad (Selar 

crumenophtalmus) as live bait and their boats have few or none automated system as GPS or echo 

sounder, what is a limitation for the range of their fishing area (TRAVASSOS and CARVALHO, 

2002). On the other hand, the recreative crews also use corrico as fishing strategy, but operating 

four or five reels and rods with artificial baits, such as @rapalas. In addition, those boats can 

account with GPS and echo sounders to increase their fishing power.  
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Figure 1. Fernando de Noronha location map. Hatched area represents the area of national marine 

park. A courtesy of Leandro Nolé. 

Data Sample and Analysis 

We obtained geolocation data from artisanal and recreative fishing fleets from Fernando 

de Noronha in three campaigns. The samplings were performed in September/October of 2015, 

September/October of 2016 and April/May of 2017. Miniaturized GPSs were set to record 

positioning data each second and they were deployed on the boats in the morning at the beginning 

of fishing trips and removed by their end in the afternoon. However, in few occasions the GPSs 

were recovered only the following day. Prior to statistical analysis, a pre-processing was performed 

to clean and prepared the tracking data. During the three years of the project, eight boats, four for 

each fishery type, were monitored registering 35 fishing days, what generated 70 fishing routes, 

among which 14 monitored also by onboard observers (Table 1). It was necessary to remove 

positioning data within or nearby to harbor area, on land positions and duplicated points.  

Table 1. Number of days monitored, fishing trips and trips with onboard observer by fishery type 

and fishing strategy. 

Fishing type Artisanal Recreational General 

Fishing strategy Pargueira Corrico Corrico  

Days of monitoring 15 9 11 35 

#Fishing trips 38 19 13 70 

#Trips observed 2 6 6 14 
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Besides the geolocation data of boats, 20% of the fishing trips had an onboard observer to 

register the activities carried out during fishing trips. Since there were discrepancies during on 

board observer’s registers, where some information about gear release and recovery is missing, in 

this study we limited the validation of the catching state, which is the literal period when the fishers 

are capturing the fishes. In addition, the catch composition and size of individuals were registered 

to characterize each type of fishery, recreative and artisanal.  

A trajectory recorded by GPS is in fact a sequence of segments called steps, defined by the 

distance between two consecutive GPS positions. From one step we can derive a length 

(homogeneous to speed as the recording is regular in time) and from two consecutive steps, we 

can derive turning angles, which are the variation of direction between two consecutive steps. 

Calculating these values all along the track, we obtain two distributions, which can be used for the 

segmentation of a fishing track. In this study we used Hidden Markov Models (HMM) to identify 

different activities along a fishing trip. The HMM are time series models composed by, observed 

variables (Y) and a hidden sequence of states (S). In practical words, we use HMM to predict the 

probability of being in the states fishing (S=f) given a combination of observed variables, in our 

case, speed (Y = sp) and turning angle (Y = ta). This state-space model follows the properties of a 

first order Markov chain which assume that the future state (St+1) is only dependent on the current 

state (St), not considering how the process achieved that ongoing state (Grigoletti, 2015) (Fig. 2).  

 

Figure 2. Hidden Markov model state transition scheme. Each current state (St) depends only on 

the previous state (St-1). 

Some probabilities must be specified to define the HMM (Equations i, ii and iii), (i) a 

matrix of transitional probabilities, which consists in the probabilities of switching or not from one 

state (St) for another considering the previous state (St-1), (ii) a matrix of observation probabilities, 
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which are the probabilities of been in one state (St) considering what was observed  (Ot) in terms 

of speed and turning angle and (iii) a vector of initial probabilities, which are the general 

probabilities of been in one state or other (See Rabiner, (1989) and Bengio (1999) for detailed 

information on HMM). 

(i) P(St | St−1) 

(ii) P(𝑆𝑡 │ 𝑂𝑡 ) 

 

(iii) P(𝑆𝑡=0) 

In the present work, the observed variables were the step length and turning angles 

distributions, as it is common in ecological studies about animal spatial behavior. We used a 

package developed for the R environment called moveHMM (MICHELOT et al., 2016). This 

package was developed for researchers interested in animal movement analysis facilitating the 

application and offering a variety of HMMs composed by different model’s parameters. In this 

package there are four probability distributions available for step length information (Weibull, 

Gamma, Exponential and Log-normal), but only Weibull and Gamma were used in this study, 

since they remaining family distributions were not adequate. The exponential distribution was not 

representing the shape of our dataset and the log-normal family was problematic dealing with zero 

inflated dataset. In addition, there are two family distribution for modeling turning angle 

distribution, Wrapped Cauchy and Von-Misses, both used in this study.  

Other parameter that some author determine before the modeling procedure is the number 

of states in which the trajectory should be segmented. The number of states depends on the number 

of behaviors that is expected to be found or analyzed. In our project, we are interested in the 

identification of catching and non-catching states and we compared trajectories segmented into 

two and three states to identify any improvement on model performance. The number of states 

chosen has influence over the determination of initial parameters required during modeling 

procedure of moveHMM package. The initial parameters are important to find the maximum 

likelihood estimate used in the trajectory segmentation (MICHELOT et al., 2016). To define the 

initial parameters, we used K-means algorithms that consists in classifying the step length into two 
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or three clusters (depend on the number of states considered) by defining centroid values while 

keeping them as lower as possible. 

The fishery of Fernando de Noronha is characterized by the use of different gears and 

fishing strategies. There are two categories of fishers (recreational and artisanal) that work with 

three métiers (pargueira, artisanal corrico and recreative corrico). To understand how the HMM 

algorithm performs with mixed-gear dataset, we created 5 databases (subsets), classified as: (i) 

general: (ii) pargueira (iii) corrico, (iv) artisanal and (v) recreative. The general subset includes all 

trajectories recorded.  The pargueira subset has only trajectories that performed pargueira métier. 

The corrico subset includes the artisanal corrico and recreative corrico. The artisanal is formed by 

trajectories of pargueira métier and artisanal corrico. The recreative subset is formed only by 

recreative corrico. We denominated those datasets as subset during modeling because we cannot 

consider them as métiers, since they have different métiers included on them. Furthermore, each 

subset was resampled with different interpolation periods: 10 seconds, 30 seconds, 60 seconds and 

120 seconds. Because the temporal resolution of GPS can be a source of error; while a too low 

GPS frequency could underestimate the real distance covered (and the corresponding speed), the 

high frequency (like our case), lead to summing the GPS slight location error and could 

overestimate the real distance traveled (PALMER, 2007). In addition, high resolutions could 

increase the autocorrelation between states, violating the 1st order correlation hypothesis used in 

the Markov chain. 

Summarizing, in this study we combined different model’s parameters been, two family 

distributions for step length and two for turning angle, four temporal resolutions, five subset types 

and the trajectories were segmented in two ways, resulting in 160 models 

Model Performance Evaluation 

As mentioned before the modeling process carried in this work is going to evaluate the 

fishing activity of vessels from the archipelago of Fernando de Noronha. Due to data registering 

problems, for validating the behavioral modeling we considered that fishing activity is the moment 

when the fishermen are catching fishes literally.  

The Akaike Information Criterion (AIC), which is an estimator of the relative Kullback-

Leibler distance, that represents how much information was lost when using a given model to 

approximate the reality (Akaike, 1974), was applied to evaluate the fitness of the models. 
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Additionally, confusion matrixes (commonly used in machine learning processes) were also used 

to assess model’s effectiveness. It consists in summarizing the results of a classification model into 

a simple 2x2 matrix, composed by columns of predicted values (resulted from modeling) crossed 

over with rows of real observations (activities registered by onboard observers) (Table 2). The 

results of True Positive and True Negative are used to calculate the accuracy of models. From 

False Positive results is calculated the overestimation and the False Negative to obtain 

underestimation (Equations iv, v and vi).  A Kruskall-Wallis test was performed to identify 

significative differences for accuracy, under and overestimations by model parameters.  

Table 2. Confusion matrix representation. Results from crossing over real observations with 

predicted model outcomes. 

 Predicted 
NO YES 

Real 

NO 
True Negative 

TN 

False Positive 

FP 

YES 
False Negative 

FN 

True Positive 

TP 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝒐𝒕𝒂𝒍
∗ 𝟏𝟎𝟎 

 

𝑼𝒏𝒅𝒆𝒓𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒊𝒐𝒏 =
𝑭𝑵

𝑻𝒐𝒕𝒂𝒍
∗ 𝟏𝟎𝟎 

 

𝑶𝒗𝒆𝒓𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒊𝒐𝒏 =
𝑭𝑷

𝑻𝒐𝒕𝒂𝒍
∗ 𝟏𝟎𝟎 

To estimate the relative importance of variables that fed the models on the accuracy, under 

and overestimation of fishing activity definition we run a random forest (RF) algorithm. Random 

forests are combinations of decision trees that are constructed through a bootstrapping procedure 

of the original dataset (BREIMAN, 2001). The randomization during the selection of attributes for 

each three of the forest increases the differences between them, consequently lower their 

(iv) 

(v) 

(vi) 
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autocorrelation and the classification error rate of the forest decreases (BREIMAN, 2004; 

OSHIRO, 2013).   This method allows ranking the importance models parameters by computing 

the variation of error while one variable is kept out and the other are kept in, then it can identify 

which explicative variables have higher impact on the response variable (LIAW and WIENER, 

2002).   

RESULTS 

Fishery Behavioral Modeling 

 Geolocation data of the boats were used to infer fishermen behavior, based on speed and 

turning angle variation derived from GPS records. Trajectories were organized into five subsets 

(1) artisanal, (2) recreative, (3) corrico, (4) pargueira and (5) general. Each subset was resampled 

through linear interpolation in four temporal resolutions (10s, 30s, 60s and 120s), which resulted 

in 20 datasets that were used for modeling the trajectory segmentation. Speed strongly varied 

between subsets as well as between temporal resolutions. The turning angle histograms tended to 

keep values close to zero for all scenarios, but their zero’s concentration varied according to subset 

or interpolation period. 

Since there were only two pargueira trajectories accompanied by onboard observers we 

decide to exclude this dataset for further analysis to prevent misinterpretation of model 

performances. Overall, considering the mean accuracy (MA) of catching state estimation, the 

recreative subset presented higher results (74%) and there was found significant differences for 

the values of mean accuracy between subset type (Kruskal-Wallis chi-squared = 36.218, df = 3, p-

value = 6.734e-08). There were no significant differences between values of mean accuracy 

regarding family distribution of turning angle and Wrapped Cauchy presented higher results of 

MA (72%).  The Weibull distribution had better result of MA (73%) been significantly different 

from result of Gamma distribution (Kruskal-Wallis chi-squared = 5.2654, df = 1, p-value = 

0.02175). Concerning interpolation period, the 10 seconds time interval had the greatest values 

(74%) and the 120 seconds the weakest results of mean accuracy (69%). Significant differences 

were found among mean accuracy results of interpolation period (Kruskal-Wallis chi-squared = 

36.848, df = 3, p-value = 4.954e-08). Finally, the models that segmented the trajectories into two 

states had 72% of mean accuracy while the trajectories segmented into 3 states had 71% of MA. 

Results of mean accuracy are synthetized in figure 3. 
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Figure 3. Boxplots of general accuracy and mean accuracy for each independent variable (y axis), 

excluding pargueira subset. WC stands for Wrapped Cauchy and VM for Von Misses. 

 

For complementing accuracy results, under and over estimation of catching states were 

calculated to infer about model’s quality. Underestimation varied from 0.7% to 23%, with mean 

underestimation (MU) of 6.5%. In respect to overestimation results ranged from 1.3% to 38.5%, 

with an average of 21.2%. Since results of MU, MO and accuracy are complementary, the variables 

with higher results of mean overestimation of catching states presented the lowest values of mean 

underestimation. The highest values of mean overestimation were found for the artisanal subset 

(27%). There was found significant difference of MO among the subset types (Kruskal-Wallis chi-

squared = 47.611, df = 3, p-value = 2.576e-10). The Von Mises distribution had 22% of mean 

overestimation, been significantly different from Wrapped Cauchy value (Kruskal-Wallis chi-

squared = 5.3422, df = 1, p-value = 0.02081). The Gamma distribution was slightly worse than 

Weibull distribution presenting 22% and 19% of mean overestimation, respectively. Regarding the 

number of states in which the trajectories were segmented the two and three states models had 

equal results of MO, both with 21%. Finally, the poorest temporal resolution which is 120 seconds 
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had the worse result of MO (26%) and there was found significant differences among the 

interpolation periods in respect to MO values (Kruskal-Wallis chi-squared = 36.151, df = 3, p-

value = 6.956e-08). The overall results of under and overestimation of catching states can be seen 

in figure 4.  

 

Figure 4.  Boxplots for under and overestimation by variables of fishing activity. Grey boxes: 

overestimation; white boxes: underestimation. 

 

Analysis of AIC (Fig. 5) were not conclusive about what model parameter would present 

the best fit in general. However, it was observed that the models with best fit were mostly 

composed by Gamma distribution, except by models with interpolation period of 30 seconds (Fig. 

5, panel B). The models with 60 seconds of time interval had better fit when modeled with Von 

Mises distribution (Fig. 5, panel C). Regarding number of states, the 10 seconds and 60 seconds 

models had better results when segmented into two states (Fig. 5, panels A and C).  
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Figure 5. Model performance according to the Akaike Information Criterion (AIC) by interpolation period and subset type. Models 

closest to 0 are considered with higher quality. Panels present different interpolation periods (A) 10 seconds, (B) 30 seconds, (C) 60 

seconds and (D) 120 seconds 
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To define the importance of model’s parameters for accuracy, underestimation and 

overestimation of catching state results random forest algorithms were run (Fig. 6). For accuracy, 

the most important parameter was the number of states followed by the subset type and 

interpolation period. For under and overestimation of catching state, the most important variables 

were the subset type, number of states and interpolation period, consecutively. In general, the 

families of step length and turning angle distributions had small or no importance over results of 

accuracy, under and overestimation. 

 

Figure 6.Variable importance for accuracy, over and underestimation of fishing state 

 

In absolute values, the results of accuracy ranged from 59% to 79%. The best and worst 

model in terms of accuracy, differs their structure just by the interpolation period used, which is 

30 second period for the best models and a 60 seconds time interval for the worst. All models 

present a high autocorrelation, which increases when finer temporal resolution is assumed, 

however it does not reflect negatively on the results of model estimation capability. Table 3 shows 

the five best and the five worst models in terms of accuracy. Figure 7 presents the comparison 

between real catch distributions and model catch distribution estimation as well as model fitting 

and autocorrelation plots of general best and worst models.  
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Table 3. Best and worse models in terms of accuracy by database (subset) and their corresponding combination of model’s parameters. 

 

 Subset 

Distribution 

for Step 

Length 

Distribution 

for Turning 

Angle 

Number of 

States 

Interpolation 

Period 
Accuracy Underestimation Overestimation 

Best Models 

Recreative Gamma Von Mises 3 States 30 Seconds 79% 10.9 9.8 

Corrico Weibull Von Mises 3 States 60 Seconds 77% 7.8 14.9 

General Weibull 
Wrapped 

Cauchy 
2 States 10 Seconds 74% 9.4 16.4 

Artisanal Weibull 
Wrapped 

Cauchy 
2 States 10 Seconds 73% 1.7 24.9 

Worst Models 

Recreative Gamma Von Mises 3 States 30 Seconds 58% 2.7 38.4 

Corrico  Gamma Von Mises 3 States 120 Seconds 61% 1.8 38.6 

General  Gamma Von Mises 2 States 120 Seconds 66% 5.21 28.5 

Artisanal Gamma 
Wrapped 

Cauchy 
3 States 10 Seconds 64% 6.1 29.3 
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c 

c 

A 

B 

Figure 7. Real recreative crew catch zone, best (upper rectangle A) and worse (lower rectangle B) model catch zone estimation, godness of fit 

plots and residual autocorrelation of step lengths. 
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Fishing Activity Characterization 

Analyzing the distribution of both fleets there are no major differences among the spatial 

distribution of fishing vessels. Based on results of the modeling process, the time and distance 

spent in each state (catching and non-catching) were calculated for both fleets using estimations 

from the best models. The artisanal fleet navigated about 56 km per trip and spent an average of 

nine hours per fishing trip, of which five were in catching operation. On the other hand, the 

recreative crew traveled about 73 km per fishing trip and spent seven hours per fishing trip, 

however they spend only two hours catching the resources. The fishers tend to concentrate their 

catch zones around locally well-known fishing areas, such as the “Drina”, “Casinha Branca” and  

“Pico com Frade” in the east side of the AFN, also called “outside sea”, along the boundaries of 

PARNAMAR, which is over the 50 meters depth isobath (Fig. 8). 

 

Figure 8. Traditional fishing grounds explored by fishermen of Fernando de Noronha. (A) "Drina", 

(B) "Casinha Branca" and (C) "Pico com Frade". 
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Besides the similar fishing spatial distribution (Fig. 9), the catch composition of the two 

fleets distinguish themselves in terms of total productivity, species and fish size. During the tree 

years, 316 fish were captured and informally identified, 199 by the artisanal fishery (~25 ind./trip) 

and 117 by the recreative (~15 ind./trip). Numbers of individuals that were hooked, but lost, were 

also registered, being 75 lost fish by the artisanal and 12 by the recreative. The catch composition 

of the fleets is given in table 4. The artisanal fleet captured more species than recreative, however 

it was concentrated mainly on Barracuda (Sphyraena barracuda) and Rainbow runner (Elagatis 

bipinnulata) responsible for almost 88% (N = 117 and N = 58, respectively) of all identified 

individuals. In contrast, the recreative crew had 50% of production composed by Barracuda and 

the remaining taxa were found in similar quantities. A considerable difference between the catch 

composition of the fleets is the high presence of wahoo (Acanthocybium solandri) and tunas in the 

recreative catch, absent in the artisanal ones, as well as the number of rainbow runners in artisanal 

in comparison with recreative. Taxa and number of individuals caught by artisanal and recreative 

fleet of Fernando de Noronha during three years of monitoring. 

Table 4. Taxa and number of individuals caught by artisanal and recreative fleet of Fernando de 

Noronha during three years of monitoring. 

Taxa Artisanal Recreative 

 # % # % 

Barracuda 117 59 59 50 

Rainbow runner 58 29 15 13 

Tunas 3 1.5 21 17 

Wahoo 1 0.5 11 10 

Lutjanidae 10 5 0 0 

Carangidae 6 3 11 10 

Balistidae 4 2 0 0 

Total 199 100 117 100 

 

Results of CPUE using the modeling results presented a more realistic scenario than when 

calculated through traditional method, using the time of departure and arrival to port. In the 

following example (Fig. 10), improvement of CPUE does not seen to be significant, however if 

used in fisheries where the time of effort allocation is considerably smaller than the total time of a 

fishing trip, the improvement would be more relevant.  
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Figure 9. Fishing vessel's trajectories recorded during the three years project in Fernando de Noronha Archipelago. 

  



 

38 
 

1. Real CPUE 

a. Start Time = 6:43h 

b. Final Time = 10:15h 

i. Total Effort Time = 3.32h 

CPUE = 1.8 

 

2. Traditional CPUE 

a. Departure Time = 06:13h 

b. Arrival Time = 10:15h 

i. Total Effort Time = 4:02h 

CPUE = 1.5 

 

 

3. Model Estimated CPUE 

a. Estimated Effort Time = 3:48h 

CPUE = 1.6 

  

Figure 10. Comparison between real CPUE results (1), CPUE based on traditionally calculated effort time (2) and effort time estimated by HMM modeling 

(3) 

Real Effort 

Traditional Effort  

Model Estimated Effort 
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A map of general catch zone estimation considering the 70 trajectories modeled can be 

seen in figure 11. The model estimation of catch zones is appropriate since they are concentrated 

in areas where fishers actually operates. However, attention must be taken to the indication of 

fishing activity been carried into the PARNAMAR limits as well as the tendency of the models to 

overestimate the catch state. 

 

Figure 11. General catch zone estimation based on the 70 trajectories monitored through GPS 

devices. PARNAMAR limits denoted by polygon.  

DISCUSSION 

 In this study we explicitly presented the spatial displacement of fishermen from Fernando 

de Noronha archipelago denoting the persistence of using locally traditional fishing grounds (Fig. 

X). Moreover, considering that ~76% (N=97) of the models considered (N=128) presented 

accuracy higher than 70%, we affirm that HMM are appropriate to model the behavioral activity 

of fishermen of Fernando de Noronha.   
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Fishery Behavioral Modeling 

The HMM has been successfully used for modeling animal behavior for decades 

(CODLING and DUMBRELL, 2012; EDELHOLFF et al., 2016; PATTERSON et al., 2017). For 

fishermen behavioral modeling, Vermard et al (2010), identified various behavioral modes through 

HMM algorithms as well as quantified the effort allocation of pelagic trawlers. Peel and Good 

(2011), reinforced the efficiency of this method when implementing HMMs to model individual 

fishermen trajectories. In our project, we successfully modeled the behavior of fishermen from 

Fernando de Noronha Archipelago and described the fishery dynamics based on the results. 

First, in this project there were some methodological inconveniences about onboard 

observers and interpolation processes. First, different onboard observers carried out the registering 

of information on logbooks and it may have caused a non-standardization of data reported, mainly 

in concern to time of gear deployment and recovery. Since we lack information of effort allocation, 

we limited our analysis to the moment of effective capture of fish (information registered for all 

trips observed), which is an explanation for the tendency for overestimating the fishing states. A 

second issue is related to interpolation of fishing trajectories, which could not be used in the 

original temporal resolution of GPS (1 second) due to computational limitations. The moveHMM 

package took about 2 hours to model each path segmentation with interpolation period of 1s. We 

tested 40 models for each interpolation period and saved them as Rprojects, but the 1 second 

project had more than 2 gigabytes and could not be load to R environment due to computer low 

capacity. In addition, high temporal resolutions implicate in high autocorrelation, which is an 

obstacle in the HMM application, then we excluded this resolution from analysis. 

 Based on random forests results, over the five model parameters analyzed the type of 

database used for modeling fishermen behavior was the most important for model’s performance. 

Turning angles and step length are the movement metrics used to estimate the behavioral states 

and during the modeling process the dataset organization can influence how the metrics are 

interpreted. Looking at the movement metrics we can infer about animal behavior and relate the 

findings with environmental features, climatic variations, ontological phases and others. For 

example, Eckert et al (2008) associated the different behavioral modes of loggerhead turtle 

(Caretta caretta) to their body size and oceanographic variables to describe how this specie behave 

according to different morphological characteristics or environmental circumstances. Regarding 
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fishermen behavior, Joo et al (2015) based on 14 metrics, such as trip duration, trip distance, 

maximum distance from coast, among others, classified Peruvian fishermen into four major 

groups. In our case, the recreative crew operates with higher speed than artisanal fishermen, which 

result in a step length distribution concentrated to the right, while the contrary is valid to the 

artisanal with lower concentration of large steps. This difference can be used to characterize the 

two fishery types. Moreover, when considering only the artisanal fishery, the step length 

distributions of pargueira and corrico strategies were different, which is a signal of distinct 

movement dynamic into this fishery type. Our results showed that when selecting the trajectories 

from a single fishing strategy we can have higher values of accuracy than using a generalist 

database. However, since all database used presented great values of mean accuracy the decision 

what is the most adequate to use depends on the research question. For a whole overview of fishing 

ground distribution, the general database would be satisfying. The partitioning of dataset into 

single métier subsets would be suggested in case when the study aim is to identify differences 

between space use according to fishery fleet or if a high value of precision is demanded, for 

example to identify inadequate use of marine area, to identify hotspots of fish aggregation or to 

monitor displacement of fishing zones over the time. 

The second most important model parameter was the number of states in which the 

trajectories were segmented. According to mean accuracy values, the trajectories segmented into 

two states had better results. In most of scenarios, the addition of a third state did not increase the 

number of behavioral modes, it just added or subtracted some points in segments that were 

similarly estimated as catching by the two state models. However, a few models segmented the 

trajectories into three different well-defined states. Unfortunately, we cannot interpret each state 

because we do not have detailed information about every activity carried out during the fish trips, 

which limited our inference just for catching state as previously cited. The AIC results did not 

elucidate which number of states would produce the best fit, differently from what was described 

by other authors. Studies have shown that number of states selection through AIC tend to suggest 

the models with higher number of states as best fitting because as new states are added to the 

modeling process, clusters with less overlapping would be created, however it leads to an 

unrealistic translation for biological meanings (De RUITER et al., 2016; LI and BOLKER, 2017)                            
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The third most important model parameter was the temporal resolution in which the 

trajectories were resampled. It is extensively discussed on literature due to its impact over model 

performance. Some concerns about interpolation period are related to the loss of information when 

low frequency is assumed and on the other hand the increase in autocorrelation in higher 

resolutions (RYAN et al. 2004; FIEBERG et al., 2010; PATTERSON et al., 2010; CAGNACCI 

et al., 2010). In this study the 120 seconds interpolation period presented the lowest value of mean 

accuracy, confirming that information can be lost as we decrease the temporal resolution. 

Reinforcing it, our findings showed that models with interpolation time of 10, finest temporal 

resolution had greater values of mean. Autocorrelation is an intrinsic property of movement 

ecology data and the removal of this factor may have impacts over biological interpretation of 

movement (De SOLLA et al., 1999; BOYCE et al.., 2010; GUARARIE et al., 2010).  In our study, 

the high residual autocorrelation for step length distribution did not have negative impacts for the 

segmentation of trajectories, as denoted by the best results for the 10 seconds temporal resolution. 

 One of the first stages on the behavioral modeling through Hidden Markov Model is to 

define which family of distribution better represents the dataset studied. The Gamma and Weibull 

distributions were used in the modeling process and both had similar performance denoted through 

coincident values of mean accuracy. For each model one of those families (Gamma or Weibull) 

were assumed to represent all states present in the step length distribution of a trajectory. The most 

appropriate method would be to find the better fit distribution to each state, since this 

generalization can cause confuse interpretations of data distribution where the tails are not well 

modeled, and an overlap of state distributions can occur. In relation to turning angle distributions, 

we found significant differences between the accuracy of models for Von Misses and wrapped 

Cauchy families. These distributions have been vastly used for turning angle modeling of animal 

movement and they are assumed to be equivalent since they have similar shape (BOVET and 

BENHAMOU, 1988; CODLING et al., 2004; MORALES et al., 2004). In our case, the wrapped 

Cauchy better expressed our data distribution. The wrapped Cauchy is characterized by higher 

concentration of data over the mean parameter (commonly assumed to be 0), when compared to 

Von Misses (CODLING and HILL, 2005; BARTUMEUS et al., 2008). This pattern suggests a 

low diffusive behavior, which is in accordance with the behavioral distribution found for the 

fishermen of Fernando de Noronha, who tended to travel directly to and from fishing grounds at 

the beginning and finish of fishing activity. 
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Fishing Activity Characterization 

 Geolocation data from artisanal and recreative fleets of Fernando de Noronha were 

registered via GPS devices to be used for describing fishing activity in the archipelago. Our results 

demonstrate that even applying diverse fishing techniques and strategies the fishers from both 

fleets permuted and shared common fishing grounds around the islands (Fig. x). However, 

however the catch composition of the fleets in Fernando de Noronha have substantial differences 

independently from the similarity of fisheries spatial distribution. Considering the potential 

problems of using fishery data, it is essential to understand the dynamic of each fishery to avoid 

misjudgments about ecosystem conditions. Marchal et al. (2008) discussed how catch profiles can 

be used to characterize métiers of a mixed-fisheries and they have found that both concepts are 

interlinked, and they can be used as descriptors of each other at some scale. In AFN the type of 

baits and the fish strategy adopted (métier) are more likely to be affecting the catch composition. 

Baits have been demonstrated as a factor influencing catch composition and size structure of fish 

captured (BROADHURST AND HAZIN, 2001; ARLINGHAUS et al., 2008; ALÓS et al., 2009). 

In addition, each métier is operated in different depth ranges and variation on fish community 

through depth gradient is well known, since it is closely related to temperature, oxygen, prey 

availability and other parameters (TOLIMIERI and LEVIN, 2006; ZINTZEN et al., 2017). 

 Beyond the exploration of traditionally known fishing zones, the fishing is performed on 

the border of National Marine Park (PARNAMAR) limits, which demonstrate the close 

relationship of this management measure with the fishery activity. Marine protected areas (MPAs) 

are increasingly been proposed as an appropriate measure to deal with the growing spatial 

occupation by different anthropogenic activities. For fisheries, when adequately planned can 

improve the profit as well as the supply of ecosystem services (SANCHIRICO et al., 2006; 

GAYLORD et al., 2005). Considering the small-scale fisheries, it is important to consider the 

social impacts of MPA implementations, since the fisher may modify their traditional behavior 

due to policy requirements (MASCIA et al., 2010). As presented by Lunn and Dearden (2006) in 

a case study conducted in Thailand, almost 52% of small-scale fishers interviewed by them were 

not aware of the prohibition of fishing activity with a national park limit. This lack of 

communication among stakeholders, policy makers and community are a huge problem leading to 

inefficient management plans. On the other hand, Gleason et al (2010) showed how successful an 
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MPA implementation can be when a planning process is clearly defined, involving the whole 

community using robust scientific data in accord with local legislation.  

In addition to the importance to understand the fishermen distribution and their relationship 

with the surrounding areas, fishery behavioral modeling is the calculation of a spatially explicit 

CPUE. In addition, information on the contraction or dispersion in the distribution of fishing 

vessels can be used to identify possible pressures exerted on the aquatic resources (BERTRAND 

et al., 2007). With vessel distribution and effort allocation data a spatially explicit CPUE can be 

calculated and problems with CPUE hyperstability can be avoided. Lessa et al. (1998) is one of 

the few studies focused on CPUE of Fernando de Noronha fishery, and it was achieved a 73kg/trip 

in 1989, which was considered a high value when compared with results of CPUE from the 

Northeast of Brazil for the same period. A decrease in CPUE was noticed by these authors and it 

was explained by the reduction of effort. Nonetheless, misinterpretation of CPUEs can lead to 

tremendous outcomes, as it occurred in the Atlantic cod (Gadus morhua (Limneus, 1758)) fishery, 

when traditional methods of stock assessment, such as catch per unit effort (CPUE), were 

inefficient in detecting this population decline (HILBORN and WAITERS, 1992; HUTCHINGS , 

1996). 

Overall, data over fishery distribution has become more accessible in the last decades, 

however it is true for industrial and large-scale fisheries. Talking for artisanal and small-scale 

fisheries there are not much information about their displacement even they are responsible for 

employing more than 90% of the fishers around the world and produce about 50% of the capture 

in developing countries (FAO, 2016). This study has reinforced the use of behavioral modeling 

based on GPS devices as an effective method to describe the spatial distribution as well as to 

estimate the catching activity of small- scale fisheries that operates on the Archipelago of Fernando 

de Noronha. Considering the growing concerns to apply management actions based on ecosystem, 

and the high competition for marine spatial use, understand and include the displacement of 

fishermen in management plans has become necessary to guarantee a complete and successful 

implementation of sustainable policy of marine exploration.  
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CONSIDERAÇÕES FINAIS 

 

É notável a crescente necessidade da coleta de informações que integrem conhecimentos 

acerca do ecossistema em geral e em alta resolução espaço temporal para garantir o 

desenvolvimento e implementação de medidas de manejo eficazes. No atlântico tropical, o 

Arquipélago de Fernando de Noronha desempenha um importante papel ecológico para região 

oceânica e por isso muitos são os esforços para garantir a sustentabilidade no uso dos recursos 

naturais locais. Este trabalho gerou resultados inéditos quanto a distribuição espacial da atividade 

pesqueira em alta resolução e também sobre a alocação do esforço pesqueiro das frotas recreativa 

e artesanal atuantes no entorno das ilhas. Também foi evidenciada a eficácia da modelagem 

comportamental das frotas pesqueiras através de Modelos Ocultos de Markov, o que possibilita a 

inferência sobre a dinâmica das embarcações não acompanhadas, porém rastreadas via GPS. Com 

tais informações podem ser calculados índices de abundância precisos e de forma espacialmente 

explícita. Além disso, dados de composição das capturas podem servir para melhor entender as 

particularidades cada frota pesqueira de Fernando de Noronha. Em geral, as informações presentes 

nesse trabalho podem servir como subsídio para futuras discussões sobre o manejo dos recursos 

naturais capturados pela pesca. Em adição, estes dados podem auxiliar o entendimento da relação 

entre pescadores e as medidas protetivas implementadas no arquipélago e as possíveis respostas 

que os mesmos teriam com alterações nessas unidades de conservação. 
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