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Resumo
O uso de gestos de mão é uma maneira intuitiva e versátil para humanos interagirem
com computadores. Este trabalho tem como foco o reconhecimento de gestos estáticos,
também conhecidos como posturas de mão. Um bom sistema de reconhecimento de gestos
deve suportar variações na imagem, como de escala, iluminação e rotação, além de ser
capaz de funcionar em tempo real. Considerando o sucesso recente de redes neurais
convolutivas e robustez de técnicas tradicionais, esta dissertação apresenta uma nova
arquitetura baseada em redes convolutivas para reconhecimento de gestos com acurácia
e em tempo real. A arquitetura proposta combina redes convolutivas com descritores
de características tradicionais. Os hiperparâmetros que descrevem esta nova rede são
selecionados de forma automática usando um algoritmo de otimização. As características
tradicionais são extraídas da imagem usando momentos de Zernike, momentos de Hu,
filtros de Gabor e propriedades de contorno da mão. Estas características são usadas para
complementar o conjunto de informações disponível para a camada de classificação da
rede convolutiva. A arquitetura proposta é comparada com modelos de redes convolutivas
propostos recentemente. Para isso são usadas três bases de dados de gestos estáticos de
mão. Para verificar como a representação da imagem pode influenciar nos classificadores
considerados nesse trabalho, as bases de dados são subdivididas em representações por
profundidade, escala de cinza e binárias. Além disso, as arquiteturas são comparadas
em termos de velocidade e acurácia de classificação, usando reescalonamento com e
sem preservação de aspect ratio e dois métodos de validação comumente empregados no
contexto de reconhecimento de gestos: holdout e leave-one-subject-out. É demonstrado
experimentalmente que a arquitetura proposta supera o estado da arte com reconhecimento
de gestos em tempo real, sendo robusta em diferentes representações e escalas da imagem.
Foi registrada uma melhora de até 5.93% em comparação ao melhor modelo existente
em uma base de dados RGBD com 81,000 imagens e 27 classes de gestos. Além disso, é
disponibilizado um vídeo demostrando reconhecimento em tempo real de até 27 gestos
estáticos de mão a 30 quadros por segundo, usando uma câmera 3D.

Palavras-chave: posturas de mão, redes neurais convolutivas, seleção de hiperparâmetros.



Abstract
Gesture based human-computer interaction is both intuitive and versatile, with diverse
applications such as in smart houses, operating theaters and vehicle infotainment systems.
This work focuses on recognition of static hand gestures, also known as hand postures.
A good hand posture recognition system has to be both robust to image variations and
capable of real-time performance. Considering the recent success of convolutional neural
networks (CNNs) and robustness of more traditional methods, this dissertation presents a
novel architecture, combining a CNN and several traditional feature extractors, capable
of accurate and real-time hand posture recognition. Several hyperparameters present in
the proposed architecture are automatically selected by a model optimization algorithm.
The traditional features are extracted from Zernike moments, Hu moments, Gabor filters
and properties of the hand contour. This features are used to complement the information
available to the classification layer of a CNN. Besides the proposed architecture, recent
convolutional neural networks are evaluated on three distinct benchmarking datasets. This
datasets are further divided in depth, binary and grayscale subsets in order to investigate
the influence of image representation on recognition accuracy. Furthermore, architectures
are compared in terms of speed and accuracy using rescaling with and without preserving
aspect ratio and two common validation techniques: holdout and leave-one-subject-out.
The proposed architecture is shown to obtain state-of-the art recognition rate in real-
time, while being robust to different image representations and scalings. A recognition
improvement of 5.93% on current best model is achieved on an RGBD dataset containing
81,000 images of 27 hand postures. A demo video is provided as supplementary material,
containing real-time recognition by the proposed network of up to 27 gestures at 30 fps
from a 3D camera.

Key-words: hand postures, convolutional neural networks, deep learning, hyperparameter
selection.
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1 Introduction

Human communication involves multiple elements that can work as channels for
conveying information. It is argued that some of the most common aspects of human
communication, including speech (ROBERTSON; ZACHARY; BLACK, 1990) and gestures
(WANG; WANG, 2008; RAUTARAY; AGRAWAL, 2015), are essential for a more natural
interaction between humans and machines. With these aspects, human-computer interaction
(HCI) can benefit from both verbal and non-verbal forms of communication. Even static
hand gestures, also known as hand postures, can be used to provide an intuitive interaction
with computers (WANG; WANG, 2008). Additionally, it has been shown that employing
hand postures can accommodate the deaf or hearing impaired (BIRK; MOESLUND;
MADSEN, 1997), who mainly use hands for communication, elderly people (STEFANOV;
BIEN; BANG, 2004), and people who are bedridden (ICHIMURA; MAGATANI, 2015) or
have physical disabilities (STEFANOV; BIEN; BANG, 2004; ICHIMURA; MAGATANI,
2015).

Hand gesture recognition can serve as an interface to facilitate interaction with
components of smart houses. In particular, this type of interaction can be targeted at
groups with specific needs, as shown by Stefanov et al. (2004), Ichimura and Magatani
(2015) and Park et al. (2007). These works provide comments that address the issue of
remote control of home appliances by elderly people and people who suffer from physical
disabilities or are bedridden.

This type of system can also be useful in places with critical sanitary conditions,
such as operating theaters and kitchens. Specifically in the former and other related
situations, gesture control can reduce the duration of procedures that demand sterile
conditions by minimizing the need for contact with non-sterile input devices like mice,
keyboards or touchscreens (JOHNSON et al., 2011). This can increase efficiency and lower
the probability of complications in medical procedures. In the studies of Johnson et al.
(2011) and O’Hara et al. (2014), the application of interaction methods without physical
contact with control devices is investigated in the context of image-guided interventional
radiology and surgical procedures, respectively.

Hand gestures have other potential applications, such as providing an interface for
manipulating objects in virtual environments (SOH et al., 2013), for controlling multimedia
devices (MAIDI; PREDA, 2013) and video games (KANG; LEE; JUNG, 2004), as well
as possibly acting as a less distracting user interface for infotainment systems in vehicles
(ZOBL et al., 2003). Control of industrial and commercial robots (MALIMA; ÖZGÜR;
ÇETIN, 2006; BERGH et al., 2011) are other possible applications of such systems.
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Machine learning is a major area of artificial intelligence (AI) that assists humans
in a plethora of real-world problems, such as hand gesture recognition. This problems can
be very complex and the design of a human-made solution for them may require strenuous
efforts, especially when they have high abstraction or are influenced by large quantities of
data (GOODFELLOW et al., 2016). Deep learning is a subfield of machine learning that
has gathered significant attention. It can be difficult to find out what is relevant and what
exerts little or no influence on each task, which is the kind of knowledge needed to design
features to represent the data in question. That is why AI systems capable of learning
from the data presented to them are so significant in contributing to redirecting human
endeavor to other issues worthy of attention. Deep learning, on the other hand, requires
no prior representation or description of the problem it is employed to solve. This is due
to deep learning being an approach in representation learning, which is a set of techniques
that learn the representations (or features) from the raw data.

Existing methods in deep learning seek to “understand the world in terms of a
hierarchy of concepts, with each concept defined in terms of its relation to simpler concepts”
(GOODFELLOW et al., 2016, p. 1). For instance, in tasks that deal with images, although
all the information initially available to deep learning methods is a collection of pixels and
their individual values, the network gradually learns from the input specific features that
are related to properties (e.g., edges, corners, and even more advanced shapes) found in the
image. The learned features grow in abstraction, with more abstract learned representations
being described in terms of simpler, previously learned, representations. The combination
of all learned features, in turn, describes the relevant objects in the image.

There is no easy way to mathematically conceptualize some real-world problems
due to the many unknown variables and their interactions and, for this reason, statistical
models may not be suitable as an approach to solving them. In numerous of these cases,
deep learning architectures can be employed and also save time that would otherwise
be spent in feature engineering. This characteristic also makes deep learning networks
adaptable to various types of input, including images, videos, sound and text. Having
said that, there are several elements that motivate working with deep learning in object
recognition tasks. When compared to other machine learning methods, deep learning
networks perform more intensive computations involving floating point operations, such as
with matrices. Processing in deep networks, as with other neural networks, can be highly
parallelized and, because of this, the market of graphics processing units (GPUs), with
the decline of GPU prices, is making a positive impact in deep learning applications by
offering enhanced performance necessary to train deep learning models (SCHMIDHUBER,
2015; DENG; YU, 2014; LECUN; BENGIO; HINTON, 2015).

A type of deep network that is commonly used in computer vision is the convolu-
tional neural network (CNN). In CNN architectures, the combination of specialized layers
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Figure 1 – Interest in artificial neural networks and deep learning over time in the last ten
years

Source – Data acquired from Google Trends (<www.google.com/trends>)

is one of the important factors that influence the capabilities of these networks to learn
features, but is not the only one responsible for their success. New training algorithms,
better GPUs and other enhancements also make CNNs more competitive in machine
learning tasks, contributing to state-of-the-art performances (SCHMIDHUBER, 2015;
LECUN; BENGIO; HINTON, 2015).

In summation, the use of deep learning and its techniques is motivated by the many
advantages they bring. The above points gain strength when considering the growth in
popularity of deep learning networks when compared to classical artificial neural networks.
As shown in the graph in Figure 1 with data acquired from Google Trends, in the last
decade interest in classical neural networks has remained roughly constant, whereas interest
in deep learning has risen from a plateau and currently greatly outmatches the former by
a large margin.

Considering the success of CNNs in various applications involving image recognition,
several works have applied them for recognition of static and dynamic gestures (HSIAO et
al., 2014; BARROS et al., 2014; OYEDOTUN; KHASHMAN, 2016; SANCHEZ-RIERA
et al., 2016; NASR-ESFAHANI et al., 2016; JI et al., 2016). This work focuses on static
hand gestures and advances the current field by i) proposing a new architecture with
fusion of classical image descriptors and convolutional filters, ii) thoroughly evaluating the
proposed and related architectures on three distinct benchmarking datasets, considering
various preprocessing parameters such as colour space and rescaling method, and iii)
demonstrating real-time capability of the proposed system. The choice of classical image

www.google.com/trends
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descriptors is partially based on our previous work (CHEVTCHENKO; VALE; MACARIO,
2018), where we compare several classical feature descriptors for hand posture recognition
and rank them by accuracy and speed.

1.1 Research problem
An effective hand posture recognition system faces several challenges. Hand de-

tection should work with complex background and variations in illumination and scale.
Although it is not the main focus of this work, a 3D camera is used in order to make hand
detection more robust. However, the classifier proposed here does not rely on a depth
sensor and could be used with a common camera. The influence of preprocessing methods,
such as change of colour space, scale and aspect ratio, are experimentally evaluated on
benchmarking datasets.

A good recognition method must also aim for high accuracy, but in the circumstances
of hand posture recognition, real-time capability is also desirable. Deep neural networks, like
convolutional neural networks (CNNs), have gained attention for performing well in pattern
recognition compared to shallow networks and other methods (SCHMIDHUBER, 2015).
While CNNs are a state-of-the-art method for several image recognition problems, they
usually depend on massive parallel computation for training and deployment. Nevertheless,
recently a smaller and less computationally expensive CNN has been proposed for object
recognition on mobile devices (HOWARD et al., 2017; IANDOLA et al., 2016). Furthermore,
it is possible to train a small convolutional neural network dedicated to a specific task,
such as hand posture recognition, as described by Oyedotun and Khashman (2016), Nasr
et al. (2016) and Ji et al. (2016). In order to diversify the information from features, an
architecture model of a convolutional neural network is proposed that does not rely only
on feature learning, but also merges features output from classical image descriptors.

1.2 Research goals

1.2.1 Main goal

The objective of this research is to propose and evaluate a novel combination of
classical feature descriptors and a convolutional neural network for fast and accurate hand
posture recognition. Gabor features, Zernike moments, Hu moments and contour based
descriptors are used to increase the diversity of information available in a convolutional
neural network.
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1.2.2 Specific goals

• Propose a real-time capable scheme for posture recognition. This is tested with a
system implemented with a 3D RealSenseTM camera.

• Achieve state-of-the-art performance and compare with other recently proposed
models in terms of recognition accuracy and speed.

1.3 Outline
This remainder of this text is structured in the following way. Chapter 2 contex-

tualizes the problem addressed in this study. Chapter 3 presents the related literature.
Chapter 4 describes the proposed convolutional neural network. Experimental setup and
evaluation details, including datasets and the design rationale behind implemented archi-
tecture models, are given in Chapter 5. Finally, Chapter 7 summarizes the main results
and contributions of this work and raises ideas for future endeavors.
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2 Background

This section presents a general introduction to hand posture recognition and
convolutional neural networks.

2.1 Hand posture recognition
In a global overview of hand gesture recognition systems, the fundamental opera-

tional steps consist in acquiring the image, detecting and segmenting the hand, tracking the
hand and, finally, classifying the gesture (RAUTARAY; AGRAWAL, 2015). However, when
the recognition system can operate at image acquisition rate, tracking is not necessary
(RAUTARAY; AGRAWAL, 2015). Sections 2.1.1 to 2.1.4 contain a brief introduction to
the main steps involved in hand posture recognition.

2.1.1 Image acquisition

Generally speaking, image acquisition devices are colour or grayscale cameras, that
may also contain a depth sensor. Some less common approaches may involve inference of
depth data from multiple or dynamic light sources (SUAREZ; MURPHY, 2012). The speed
and resolution of the camera should also be taken into account for real-world applications.
A fast and high resolution camera may be beneficial for recognition of subtle variations
between gestures, but may be limited by the speed of the image processing and recognition
methods. On the other hand, fast recognition may allow multiple inferences to be made
from a single frame, thus potentially improving recognition accuracy.

2.1.2 Hand detection and segmentation

As the cropped image in Figure 2 suggests, detection step is used to identify the
region that contains the hand. In some cases, such as when depth data is used, it is
possible to perform feature extraction and recognition directly after detection, without
removal of the background. Next, segmentation completely separates the region that
represents the hand from the background. The output of segmentation is a description
of the pixels in a way that discriminates between the hand and everything else in the
image. If the classification task is simple enough, this can generate a binary image (e.g.,
pixels that are part of the hand have value of 1 and the rest have value of 0). The
example in Figure 2 corresponds to a binary output to the segmentation step. In more
complex situations, especially when the shape of the gesture does not provide sufficient
discrimination between some gestures, depth images can be used. In this case, each pixel
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has a depth value that is proportional to its distance from the camera. A threshold is
established to distinguish between hand and background, but depth information may or
may not be kept for classification.

The hand segmentation task is challenging due to variability of the background,
and is usually treated separately from feature extraction and posture classification. In order
to mitigate this difficulty, some posture recognition systems rely on markers or specially
colored gloves (JI et al., 2016) to maximize contrast between hand and background. With
recent advances in portable 3D cameras, such as KinectTM for Windows R© and Intel R©

RealSenseTM, it is now possible to significantly improve segmentation and recognition
accuracy even in uncontrolled environments (SUAREZ; MURPHY, 2012; PISHARADY;
SAERBECK, 2015; D’ORAZIO et al., 2016) using depth information.

2.1.3 Extraction of hand features

Following the acquisition and segmentation steps, the feature extraction phase is in
charge of obtaining a representative feature set that will be fed to a classifier. It is generally
desirable to have features that are as stable as possible to variations in illumination,
scale, translation and rotation. Some commonly used invariant features are described
in Section 2.2. While relevant features can be selected by hand, it is also possible to
train the feature extractor simultaneously with the classifier. Such an approach has been
successfully applied in hand posture recognition with convolutional neural networks, in
which several convolutional filters are trained in a similar manner to a multilayer perceptron
(MLP) (OYEDOTUN; KHASHMAN, 2016; NASR-ESFAHANI et al., 2016; JI et al., 2016;
SANCHEZ-RIERA et al., 2016; BARROS et al., 2014). Convolutional neural networks are
explained in more details in Section 2.3.

2.1.4 Hand posture classification

The classifier in Figure 2 depicts an MLP, but as long as appropriate features are
extracted, any classifier can be used. Besides artificial neural networks, some common
classifiers include k-nearest neighbors, random forests, Support Vector Machine, Dynamic
time warping and finite state machines (RAUTARAY; AGRAWAL, 2015). As well as with
other components of the hand posture recognition system depicted in Figure 2, it is usually
necessary to consider a trade-off between accuracy and speed of the classifier.

In conclusion, image acquisition, detection and segmentation, along with feature
extraction and classification are the main steps that comprise a hand posture recognition
system (RASINES; REMAZEILLES; BENGOA, 2014). These steps are outlined in Figure
2.
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Figure 2 – A diagram of the main steps of a hand posture recognition system

Acquisition Detection Segmentation Extraction Classification

...
... ...

Source – The author

2.2 Feature extraction
Some commonly used feature extraction methods are employed in this work, as

shown in the following subsections. These features are integrated into a classifier in order
to provide additional information about the image.

As mentioned in Subsection 2.1.3, image descriptors are numerical representations of
certain elementary characteristics of the image. This descriptors can synthetically represent
color, shape, texture, among other common features of an image. Some descriptors, such
as Hu and Zernike moments are specifically designed to be robust to image variations,
such as scale and rotation. Besides providing some key information about an image, this
invariant features can be expected to provide similar result to the same image under some
distortions.

2.2.1 Hu moments

The set of Hu moment invariants (HU, 1962) is one of the oldest and best-established
image descriptors. They remain roughly constant under scale, rotation and translation.
The seven moments used in this work are extracted from a binary image and are defined
in Equations (2.1)–(2.7):
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I1 = η20 + η02, (2.1)

I2 = (η20 − η02)2 + 4η2
11, (2.2)

I3 = (η30 − 3η12)2 + (3η21 − η03)2, (2.3)

I4 = (η30 + η12)2 + (η21 + η03)2, (2.4)

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2], (2.5)

I6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]

+ 4η11(η30 + η12)(η21 + η03), (2.6)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)2

− (η21 + η03)2], (2.7)

where ηij are scale invariant moments, as defined by Hu (1962).

2.2.2 Zernike moments

The Zernike polynomials were first proposed in 1934 by Frits Zernike (ZERNIKE,
1934). The corresponding moments are known to be somewhat invariant to rotation, and
can be modified to also be stable under scale and translation (TEH; CHIN, 1988).

The complex ZM of a 2D image of order n and repetition m, over an intensity
image f(x, y), is

Zn,m = n+ 1
π

∑
x

∑
y

f(x, y)Vnm(x, y)∗,

n− |m| even, |m| ≤ n, (2.8)

where x2 + y2 ≤ 1, so the original image coordinates are scaled for a unit disk x2 + y2 = 1,
and ∗ denotes the complex conjugate. The Zernike polynomial Vnm(x, y) is defined as
follows:

Vnm(x, y) = Vnm(r, θ) = Rnm(r)ejmθ, (2.9)

Rnm(r) =
n−|m|

2∑
s=0

(−1)s (n− s)!
s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
rn−2s, (2.10)

where j is the imaginary unit and 0 ≤ r ≤ 1. The normalized image coordinates (x, y)
transformation to the domain of the unit circle (r, θ) is given by the following equations:

r =
√
x2 + y2, θ = tan−1

(
y

x

)
(2.11)
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See Tahmasbi et al. (2011) for a more detailed explanation on feature extraction using
Zernike moments. Since Zn,−m = Zn,m and therefore |Zn,−m| = |Zn,m|, only |Zn,m| is used
for the feature vector. Also, |Z0,0| and |Z1,1| are the same for all normalized images and
are not used. A Zernike feature vector of order n is formed by concatenating all moments
from order 2 to n.

2.2.3 Gabor filter

The response of this filter is considered to be a mathematical representation of
simple visual cells in mammals (MARĈELJA, 1980), that encode both spatial and spatial
frequency variables of an image. It is widely used to recognize texture features by convolving
an image with the filter kernel (JAIN; FARROKHNIA, 1991). A two-dimensional Gabor
filter is given by:

G(x, y) = exp
(
−1

2

[
x2
θ

σ2
x

+ y2
θ

σ2
y

])
cos

(2πxθ
λ

+ ψ
)

(2.12)

xθ = x cos(θ) + y sin(θ) (2.13)

yθ = −x sin(θ) + y cos(θ) (2.14)

σx = σ, σy = σ

γ
(2.15)

The parameters of this filter are:

• Standard deviation of the Gaussian envelope (σ);

• Orientation of the normal to the parallel stripes of a Gabor function (θ);

• Wavelength of the sinusoidal factor (λ);

• Spatial aspect ratio (γ);

• Phase offset (ψ).

The Gabor filter performs a low pass filtering along the orientation of θ and a band pass
filtering orthogonal to its orientation θ. Therefore, by choosing the parameters above it is
possible to enhance visual properties of an image, such as spatial frequency and orientation,
as illustrated in Figure 3.

2.2.4 Contour properties

Several simple properties can be extracted just from the image contour. Figure
4 shows a hand gesture with a corresponding convex hull and a convexity defect. The
features below can be used to rapidly distinguish between simple gestures, such as open
and closed hand.
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Figure 3 – A Gabor filter with θ = 0◦ and θ = 45◦.

Source – The author

Figure 4 – A convex hull (red line) with a convexity defect (thick green line).

Source – The author

• Solidity: the ratio of contour area to its convex hull area;

• Extent: the ratio of contour area to bounding rectangle area;

• Convexity defects: a list of the five largest convexity defects is used as a feature
vector.

2.3 Convolutional neural networks
Being a popular class of machine learning techniques, deep learning has greatly

profited from technological advances in graphical processing units (GPUs) (SCHMIDHU-
BER, 2015; DENG; YU, 2014; LECUN; BENGIO; HINTON, 2015), and this in turn made
its extensive use possible. Faster GPUs meant lower network training time. In addition
to this, the effectiveness of deep network models was another factor that led to their
quick gain in popularity. This class of techniques has achieved very good results in many
important problems, outperforming other traditional techniques (SCHMIDHUBER, 2015;
LECUN; BENGIO; HINTON, 2015).

Convolutional neural networks (CNNs) are deep learning models with many layers
that comprise multiple levels, each of which is responsible for transforming the input
into a more generic representation of itself (LECUN; BENGIO; HINTON, 2015). They
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Figure 5 – An illustration of the 1961 experiment by Hubel and Wiesel.

(a) (b)

Source – Hubel (1995)

are specialized networks that work with data in a grid-like topology, such as images
(GOODFELLOW et al., 2016), and employ the convolution operation in at least one
layer. Successive transformations highlight features present in the input pattern without
the need for feature engineering, and are fundamental in the learning process of deep
neural networks. Two important properties found in CNNs are their ease of training and
high capability for generalization (LECUN; BENGIO; HINTON, 2015). Consequently,
CNNs can be employed more easily than feature extractor-based networks, the latter being
potentially specific to the problem domain. This makes them suitable for application in a
wide range of problems, such as pattern recognition (e.g., image and speech) and natural
language processing tasks (e.g., machine translation).

2.3.1 Biological inspiration

In their famous 1961 experiment, Hubel and Wiesel (1962) studied how neurons in
a cat’s primary visual cortex (V1) respond to images of certain shapes and orientations.
In their previous experiments, Hubel and Wiesel found that simple neurons closer to the
retina are responsible for detection of spots of light. The information from this neurons is
relayed mostly to V1 where it is refined for other layers in the visual cortex. The experiment
is illustrated on Figure 5a and the response of one neuron in V1 is shown on Figure 5b,
this particular neuron is more responsive to a black horizontal rectangle placed anywhere
in the receptive field. Rectangles with other orientations do not produce the same stimulus
in this neuron.

In oder to explain the organization of this receptive fields in V1, Hubel and Wiesel
propose a scheme illustrated in Figure 6. In this scheme, simple neurons from Lateral
Geniculate Nucleus (LGN), that are sensitive to spots of light, are connected to a single
neuron in V1, which in turn can react to (encode) more complex shapes. Additionally,
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Figure 6 – Possible connectivity scheme between simple neurons in LGN and a neuron in
V1.

Source – Hubel and Wiesel (1962)

complex cells response is more invariant to the position of the encoded shape in the visual
field.

While the mechanism of biological neurons are an ongoing research topic, some
simplified stationary models, such as multilayer perceptions and convolutional neural
networks have been successfully employed in several applications. For instance, both of
the properties of visual neurons described above, i.e. hierarchical feature encoding and
spatial invariance of filters are present in most of modern convolutional neural networks.

2.3.2 Main components

Broadly speaking, CNNs consist of multiple layers of a neural network, each with a
particular function, responsible for nonlinearly transforming the input and forwarding the
output to the next layer. From these transformations, CNNs abstract from details considered
irrelevant and concentrate on invariant properties present in the data (DENG; YU, 2014;
LECUN; BENGIO; HINTON, 2015). For this reason, the need for data preprocessing
is minimized when using CNNs. In other words, this type of network dispenses from
feature descriptors in favor of learning its own filters during training. Figure 7 showcases
the general configuration of a convolutional neural network, with its convolutional and
subsampling layers and, lastly, a fully connected layer.

Two types of layer worth mentioning are the convolutional layer and the subsampling
layer. The units in these layers form feature maps, and to each feature map there is an
associated kernel (or filter) of fixed size. In a convolutional layer, the convolution kernel
passes horizontally and vertically throughout the input map, convolving with each unit, as
depicted in Figure 8. The output of the convolution with each kernel is fed to a nonlinear
activation function, such as a sigmoid function or the popular ReLU (rectified linear
unit) (SCHMIDHUBER, 2015; LECUN; BENGIO; HINTON, 2015). Examples of common



Chapter 2. Background 26

Figure 7 – A general scheme of convolutional neural networks

Source – Aphex34 [CC BY-SA 4.0 (<https://creativecommons.org/licenses/by-sa/4.0>)], from Wikimedia
Commons

Figure 8 – An example of convolution. During this process, the k × k kernel is convolved
with the n× n input image. To produce the output, the dot product between
the kernel and the k×k blocks of the input (such as the one in red) is computed
by passing the filter horizontally and vertically across the entire input map.
The results are sequentially included in the n− k + 1× n− k + 1 output map.
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functions used in activation layers are shown in Figure 9.

In particular, ReLUs and its variations have been shown to improve the discrimina-
tion capabilities of artificial neural networks, including deep learning networks (JARRETT
et al., 2009; NAIR; HINTON, 2010; DAHL; SAINATH; HINTON, 2013), and the choice
for a rectifying nonlinearity is one of the most important decisions when designing a
deep architecture for accurate object recognition (JARRETT et al., 2009). The ReLU,
f(x) = max{0, x}, is a nonlinear function with two linear parts, and therefore it pre-
serves properties of linear models that allow them to generalize well and that facilitate
optimization with gradient methods (GOODFELLOW et al., 2016).

Subsampling methods are used to reduce the volume of data during training
(DENG; YU, 2014). A technique known as max pooling is one of the most commonly

https://creativecommons.org/licenses/by-sa/4.0
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Figure 9 – Some commonly employed activation functions.

(a) Sigmoid (b) Hyperbolic tangent

(c) ReLU (d) Leaky ReLU

(e) ELU
Source – The author

Figure 10 – The max pooling operation. In this depiction, the non-overlapping rectangles
are of size 2× 2, which results in a feature map half the original size.
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Source – The author
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Figure 11 – An example of fully connected network before and after the dropout regular-
ization technique.

... ... ... ... ... ...

dropout

Source – The author

employed in this context, as it can, in conjunction with other components like convolutional
layers in GPU-based CNNs, significantly help achieve good results in benchmark datasets
(SCHMIDHUBER, 2015) by adding robustness to small distortions (JARRETT et al.,
2009; GOODFELLOW et al., 2016). The max pooling layer divides an input feature map
in equally sized rectangles and computes the maximum unit for each partition. The results
are then forwarded to the next layer, so that a new feature map is built with the maximum
units replacing each rectangle. This process can be seen in Figure 10. Another known
type of pooling is the average pooling, which instead of taking the maximum element of
each window calculates the average between all window elements and forwards to the next
feature map (JARRETT et al., 2009). Typically, both types of layers alternate multiple
times and are followed by one or more fully connected (FC) layer. To introduce the last
set of feature maps outputted by a CNN to an FC layer, the flattening operation turns
the grids into a one-dimensional array of units that are then treated as input neurons to
the FC layer.

Adding to the set of essential tools for deep learning networks, a regularization
technique called dropout, by adding a random element to training, can be used to prevent
overfitting and further increase a network’s performance (SRIVASTAVA et al., 2014;
SCHMIDHUBER, 2015; DENG; YU, 2014). Figure 11 depicts the effect of this technique
on a network. Dropout acts by disabling units during training with a certain probability,
the network hyperparameter p, so that incoming and outgoing connections to these units
are removed. It can be applied to any layer of the CNN. It has been shown that the
dropout regularization technique, when compared to other regularization methods, can
lower error rates in several classification domains (SRIVASTAVA et al., 2014). Lastly,



Chapter 2. Background 29

combinations of the described components are successfully used in state-of-the-art CNNs,
which can efficiently reap the benefits of modern GPUs. For instance, despite dropout
causing an increase in training time, it can be combined with ReLU in order to lessen this
penalty (DAHL; SAINATH; HINTON, 2013).

Batch normalization 2015 is another technique for improving training time and
stability of deep neural networks. It works by normalizing the activations of a layer per
batch, keeping the mean and standard deviation close to 0 and 1 respectively. The model
proposed in this work does not employ batch normalization, mainly because it would
increase the number of parameters and this method has not been shown to increase
performance of convolutional networks with small number of layers. However, future works
could consider evaluating this technique also.

2.3.3 Considerations about real-time performance and training

One of the drawbacks of CNNs is the amount of memory required to store the
parameters and its real-time performance. For example, a classical network for image
recognition, Alex-net (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), requires about 250
MB of RAM and 1.5 million floating-point operations. Training also usually takes longer
than other machine learning methods, although this can be mitigated by parallel processing
on a GPU. High computational requirements of modern general purpose CNNs do not
apply to smaller convolutional networks, designed for specific purposes. For example, this
work compares two state-of-the-art general purpose CNNs with other networks proposed
for hand posture recognition, suggesting that smaller architectures are more suitable for
specific problems. Image size and representation should also be considered for real-time
applications, as smaller and more compact image representations (such as binary) are
potentially faster and can be done by a simpler and more robust convolutional network
(NASR-ESFAHANI et al., 2016; YAMASHITA; WATASUE, 2014; CAMBUIM et al., 2016).

Another important concern when training CNNs is how to compromise between
training time and the amount of data used for the task. The Faster R-CNN model (REN
et al., 2015), using region proposal to help locate objects, is state-of-the-art in object
detection, despite being trained for the small dataset PASCAL VOC 2007 (9,963 images
of 20 categories split in half for training and testing). The network contains shared
convolutional layers that are initialized via transfer learning from a model pre-trained on
ImageNet. Another example of network trained for a relatively smaller dataset (129,450
images of 2,032 classes with 127,463 training and validation images and 1,942 test images)
is a CNN to diagnose skin cancer (ESTEVA et al., 2017), achieving accuracy matching the
dermatologists that participated in the tests. Transfer learning was used with a GoogLeNet
Inception v3 model pre-trained on ImageNet.

The two previous examples reinforce one of the advantages of employing transfer
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learning in training. In the case of insufficient data for training, transfer learning can be
used to obtain previous knowledge from larger datasets to new tasks, even if the domains
are different, thus avoiding effort to expand smaller datasets (PAN; YANG et al., 2010).
In the present work, transfer learning is evaluated on two state-of-the-art large CNNs.
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3 Related Works

3.1 Traditional feature descriptors
Among traditional feature extraction techniques, Aowal et al. (2014) proposes

and evaluates discriminative Zernike moments (DZM) and compared them with standard
Zernike moments (ZM), principal component analysis (PCA) and Fourier descriptors (FDs).
The best recognition rates are obtained with Zernike and discriminative Zernike moments.
Kumar et al. (2017) compared Local Binary Patterns (LBP), Speeded Up Robust Features
(SURF), and Super Pixels (SP) on a proprietary dataset. SURF features were found to
yield better recognition rate, although the feature extraction time is not considered. A
real-time system that uses Fourier descriptors to represent hand blobs is developed by Ng
and Ranganath (2002). An RBF network is used for hand pose classification. Hu moments
are compared with Zernike moments for general object recognition (SABHARA; LEE; LIM,
2013) as well as for static hand gestures (OTINIANO-RODRÍGUEZ; CÁMARA-CHÁVEZ;
MENOTTI, 2012). In general, Zernike moments were found to be more accurate than Hu
moments (SABHARA; LEE; LIM, 2013; OTINIANO-RODRÍGUEZ; CÁMARA-CHÁVEZ;
MENOTTI, 2012). Wang C. and Wang K. (2016) also used Hu moments, along with valley
circle features for real-time recognition of static gestures from a 2D camera. An improved
version of Zernike moments is proposed by Guo et al. (2015), measuring accuracy as well
as computational cost on a common static hand gesture database, also used in the present
work. A combination of graph-based characteristics and appearance-based descriptors such
as detected edges for modeling static gestures is proposed by Avraam (2014). This method
is tested on ten numerical gestures from the Massey database (BARCZAK et al., 2011).
An average recognition rate of 83% with a standard deviation of 10% is achieved.

Huang et al. (2015) explored an alternative approach with depth sensors, comparing
depth data obtained from KinectTM with finger joints data obtained from a RealSenseTM

camera. Similarly, Dinh et al. (2014) used a hand model for smart home appliances with
four distinct gestures. Although recognition rate with finger joints is in most cases better
than with depth data, it should be noted that the hand model is extracted from depth
data. Thus there is a processing step before recognition, where the raw data from a
RealSenseTM camera is converted into a 3D hand model. This step is expected to have
some additional error as well as computational cost (RAUTARAY; AGRAWAL, 2015;
PISHARADY; SAERBECK, 2015).

Several 3D hand gesture acquisition and recognition techniques were surveyed by
Cheng et al. (2016), considering KinectTM and Leap Motion sensors. Possible applications of
such systems are identified in contexts such as gaming, sign language, virtual manipulation,
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daily assistance, human-robot interaction, among others. Distinction between similar hand
gestures is identified as a challenging task. The present work is evaluated on several
datasets and special attention is given to the recognition of similar gestures.

A hand gesture recognition system is proposed by Yang (2016), using a KinectTM

depth sensor for increased robustness. Dynamic gestures were recognized as a sequence
of static hand postures. Depth data is also used by Palacios et al. (2013) to improve
segmentation of hands. The proposed segmentation works for multiple hands, even when
the subject’s face and hands are at the same depth. A simple decision tree is used for
gesture recognition and the system is able to work with 25 frames per second on an Intel R©

CoreTM i7 processor. A KinectTM sensor is also used by Plouffe and Cretu (2016) for
recognition of static and dynamic gestures. Prior to gesture recognition, the positions of
the palm and the fingertips are detected and used as features for classification. A dynamic
time warping matrix is used for recognition, where the current gesture is compared with
data stored in a database. The gestures are recognized with an average delay of 100 ms.

Cambuim et al.(2016) propose and efficient hand posture recognizer implemented
on an FPGA. As in Nasr et al. (2016), gestures are converted into binary images and
classified by an Extreme Learning Machine (ELM) neural network. On an FPGA, the
system achieves 97% recognition rate at 6.5 ms per image. The present work also explores
binary representation of images as a more robust and computationally efficient method.
Emphasis is also given to efficiency, as classifiers are compared by speed with and without
use of a GPU.

A random forest classifier is used by Nai et al. (2017) to recognize hand postures
in real time. Once the hand is located, four features are extracted on depth data from
line segments located near the hand. The system runs at 600 fps with a KinectTM sensor.
Leave-one-subject-out cross validation is used and a 89.6% recognition rate is obtained
from a dataset with ten postures corresponding to digital numbers. A sign language dataset
with 24 postures is also evaluated, but the recognition rate is not shown to be better
than prior methods. Similarly, the present work uses leave-one-subject-out validation on
three datasets with 10, 27 and 36 postures. The classifier proposed in this study has the
advantage of working well with depth, grayscale and binary data without any adjustment.

A multi-objective optimization method for feature selection and classifier optimiza-
tion is proposed in Chevtchenko et al. (2018). Several feature descriptors are compared on
the Massey dataset, obtaining up to 97.63% of accuracy. The study suggests combining
Zernike moments, Hu moments and Gabor filters for increased accuracy. A multilayer
perceptron is used as a classifier. A combination of Gabor and Hu features is also used for
real-time recognition with feature extraction time of less than 2 ms on an Intel R© CoreTM

i5 processor. The Massey database is also used in the present work and the results are
presented for the entire set of gestures, including 26 letters and 10 digits.
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3.2 Convolutional neural networks
A convolutional neural network with three channels is proposed by Barros et al.

(2014). Besides a grayscale image, convolution is also applied to an image filtered by a
Sobel operator on a vertical and horizontal directions. Images are reduced to 28×28 pixels,
allowing real-time recognition. A multichannel CNN is also used in this work, this network
has two channels: grayscale image and the same image convolved by a Gabor filter. The
Gabor filter is tuned by a hyperparameter selection algorithm.

A large RGB-D hand posture dataset (HSIAO et al., 2014) is used by Sanchez-Riera
et al. (2016) to compare different forms of fusion between standard and depth frames.
Several classifiers were used for comparison, including Support Vector Machine (SVM),
Convolutional Neural Networks (CNN) and Stacked Autoencoders (SAE). CNNs achieved
the best accuracy with concatenation of depth and color data.

Three different configurations of CNNs and Stacked Denoising Autoencoders
(SDAE) are evaluated by Oyedotun and Khashman (2016) on a static hand posture
dataset (BIRK; MOESLUND; MADSEN, 1997), considering accuracy and inference time.
Recognition rates of 92.83% and 91.33% are obtained by models called SDAE3 and CNN1,
respectively. The model CNN1 is evaluated in the present study and compared against
other models on several datasets.

Ji et al. (2016) combine five CNNs by voting. Gestures are segmented with an
aid of a colored glove and images are resized to 28×28 pixels. This CNN architecture is
thoroughly evaluated in the present study, confirming that combination of CNNs results
in increased accuracy, although with a penalty on real-time performance.

A small convolutional neural network with two layers of filters is evaluated by Nasr
et al. (2016) on a public dataset with 1,400 images. A depth camera is used for gesture
segmentation, but recognition is made from a 2D binary image for lower computational cost.
The present study implements this model. Furthermore, recognition rates are compared
for classification from depth, grayscale and binary images.

3.3 Comparison with the present work
Table 1 contains a comparative summary of the state-of-the-art. ‘Colour space

columns’ contains the colour space used for feature extraction and ‘Real-time’ column
indicated whether the related work contains a demonstration of real-time recognition or
information about the speed of recognition per image. The current work is unique in the
sense that it proposes a combination of traditional and convolutional features for hand
posture recognition. Additionally, it evaluates different combinations of validation methods,
colour space and rescaling. A real-time recognition system is also demonstrated using the
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Table 1 – Comparative summary of related works

Work Classifier Color space Evaluated
datasets Real-time

Palacios et al. 2013 Heuristic RGB, Depth 1 Yes
Dinh et al. 2014 RF, heuristic Depth 1 Yes
Hsiao et al. 2014 CNN Depth 1 No
Barros et al. 2014 CNN Gray 2 No
Sanchez-Riera et al. 2016 CNN Gray, Depth 1 No
Oyedotun and Khashman 2016 CNN, SDAE Gray 1 No
Cambuim et al. 2016 ELM Binary 1 Yes
Nasr et al. 2016 CNN Binary 1 No
Wang C. and Wang K. 2016 Heuristic Binary 1 No
Ji et al. 2016 CNN Gray 1 No
Nai et al. 2017 RF Depth 1 Yes
Chevtchenko et al. 2018 MLP Gray 1 Yes
This work CNN Gray, Binary, Depth 3 Yes

proposed classifier.

As can be seen from related works, convolutional neural networks and traditional
feature descriptors have obtained good results for hand posture recognition. Drawing
inspiration from both, this work proposes a novel architecture, where a convolutional
neural network is combined with a feature vector obtained from classical image descriptors.
The key difference to a classical CNN is that the fully connected layer in our model receives
information from both, convolutional and classical features. This feature fusion-based
architecture is thoroughly compared on three hand posture datasets with recent convo-
lutional neural networks with respect to accuracy and real-time capability. Furthermore,
it is shown to perform just as well with binary images, allowing a more robust classifier,
independent from the type of camera. Our model recognizes the hand directly from depth
or 2D camera frames, without need for additional computation.
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4 The proposed convolutional neural network
with feature fusion

In a traditional convolutional neural network, a sequence of convolutional and
subsampling layers is followed by a fully connected layer—a multilayer perceptron. As
explained in Section 2.3, the convolutional layers act as feature extractors while the
last fully connected layers are responsible for delivering the final recognition result. The
idea behind the proposed architecture is to make use of common feature descriptors to
complement the information available to the last fully connected layers. For example,
since the biologically inspired Gabor filter is shown to increase recognition rate of hand
postures in Chevtchenko et al. (2018), in the proposed architecture a second convolutional
channel is fed with an image previously enhanced by this filter. Such architecture would
be consistent with what is thought to happen in the visual system of mammals, where
the Gabor filter is considered a good representation of simple cells in the visual cortex
(TURNER, 1986) and further conventional layers are used to extract higher level features.
Other properties based on shape and contour are also used to diversify information about
the hand posture prior to classification.

The architecture of this feature fusion-based convolutional neural network (FFCNN)
is depicted in Figure 12. The input is a single grayscale or binary image of a hand, rescaled
to 32×32 pixels. The grayscale image can also represent the depth channel of an RGB-
D camera. How this and other networks perform on binary, grayscale and depth data
is evaluated further in Chapter 5. The input image is fed to a convolutional channel
represented on the bottom of Figure 12. This channel contains two layers of convolution,
concatenated with max pooling layers. The number of layers and the input image size
were adjusted experimentally based on related works. As Oyedotun and Khashman (2016),
we found that two layers perform better than three, four or five on evaluated datasets.
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Figure 12 – A diagram of the proposed feature fusion-based convolutional network.

Source – The author

The same image is also fed to a Gabor filter and then to a second convolutional
channel, shown above the first one in Figure 12. This channel has the same number of
layers as the previous one. The outputs of the final max pooling layers of both channels
are concatenated into a one-dimensional feature vector. Some neurons from this single
feature vector can be disabled during training, i.e. the dropout regularization technique is
applied with a certain probability.

In order to further increase the diversity of information, an additional set of fully
connected neurons receives features that describe the shape and contour of a hand. This
additional feature vector is obtained from the concatenation of Zernike moments, Hu
moments and contour properties, described in Section 2.2. As a set of Zernike moments
can be of a variable size, this auxiliary feature vector is also of a variable size M , as
represented in Figure 12.

Both feature vectors are then applied to the input of a fully connected neural
network. Note that dropout is used only on the features extracted by convolution, as they
are more numerous and more likely to contain redundant information than the manually
extracted features. The output layer contains the same number of neurons as classes in
the dataset. The final classification is obtained by selecting the output neuron with the
highest activation. The above process is further illustrated by Figure 13, where activations
of input, output and some convolutional layers are depicted for a simple gesture.
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Figure 13 – An illustration of activations of layers in the FFCNN architecture. A depth
image is used as an input.

Source – The author

The proposed network is used for real-time hand posture recognition. We used a
3D RealSenseTM camera in order to make segmentation simpler and independent from
background. The hand is assumed to be the closest object to the camera at depth d. The
segmentation then consists of erasing all object that are further than d + 10 cm. This
has the downside of the wrist occasionally being segmented along with the hand. As will
be shown in the Results section, the proposed recognition method is tolerant to faulty
segmentation, as long as it is trained on a database that contains such cases. As described
in the flowchart in Figure 14a, the system consists of the following steps:

1. Load database: in order to sped-up the training process the database is loaded to
the main memory prior to training.

2. Train classifier with random distortions: the proposed FFCNN architecture is trained
on the entire dataset. The dataset is extended ten times using random rotations
with an amplitude of 20◦ and random rescaling with an amplitude of 10%.
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3. Initialize video capture: the PyRealSense1 library is used for depth frame capture
from the camera. Real-time recognition starts here.

4. Grab frame: a single depth frame from the camera is obtained.

5. Segmentation: the hand is assumed to be closest to the camera. Objects further than
10 cm from the tip of the hand are considered background and removed. From this
point the depth image can be converted to a binary representation.

6. Crop hand image: only the hand is left for further processing.

7. Resize to 32×32 pixels: the segmented image is rescaled to 32×32 pixels, preserving
the aspect ration.

8. Extract features: Hu and Zernike moments along with contour features are extracted
from the binary or grayscale image, which is also passed through the Gabor filter for
the second convolutional channel of FFCNN.

9. Classify gesture: the binary image and the auxiliary feature vector are presented to
the previously trained network and the recognized gesture corresponds to the most
activated output neuron.

1 https://github.com/toinsson/pyrealsense
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Figure 14 – Real-time gesture recognition system. During experimentation, steps 4–9
required 26 ms on average.

1. Load database

2. Train classifier

3. Initialize video capture

4. Grab frame

5. Segmentation

6. Crop hand image

7. Resize to 32×32 pixels

8. Extract features

9. Classify gesture

(a) Flowchart of the system. (b) Illustration of steps 4 and 5.

Source – The author

It is worth noting that while segmentation relies on the depth sensor, the recognition
can be made from a binary image. Thus the proposed system can also work with common
RGB cameras, requiring only the segmentation steps to be adjusted.
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5 Methodology

Extensive experimentation is conducted in order to compare the proposed feature
fusion-based convolutional architecture with other models. This section introduces vali-
dation methods and system setup, as well as describes the implemented architectures. A
real-time hand posture recognition system, based on the proposed FFCNN architecture is
also presented.

5.1 Benchmarking datasets
Three different hand posture datasets are used in this dissertation. They are

summarized in Table 2 and described in detail below.

Table 2 – A summary of the datasets used in this work

Dataset Year Channels Subjects Gestures Images
Massey 2011 3 5 36 2,515
LaRED 2014 4 10 27 81,000

OUHANDS 2016 4 20 10 3,000

5.1.1 Massey

The Massey dataset (BARCZAK et al., 2011) has 2,515 images, illustrated in Figure
15. The database contains variations in scale, illumination and rotation, as illustrated
in Figure 16, which shows three similar gestures: ‘a’, ‘s’ and ‘t’. There are five subjects,
allowing to use both the holdout and leave-one-subject-out validation techniques. The
hand postures are grouped in 36 classes, corresponding to digits and letters of an ASL
alphabet. The segmentation of this database is also straightforward, since the background
is already removed. This dataset is subdivided in grayscale and binary subsets and the
classification methods implemented in this work are evaluated on this subsets. The two
subsets are named Massey-G and Massey-B, corresponding to grayscale and binary data
respectively.
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Figure 15 – 36 gestures from the Massey dataset.

Source – Barczak et al. (2011)

Figure 16 – Three similar letters from the Massey dataset, showing variations in scale,
tone, illumination and slight rotation within the same class.

Source – Barczak et al. (2011)

5.1.2 OUHANDS

This dataset (MATILAINEN et al., 2016) is aimed for evaluation of both, classifica-
tion and segmentation methods. It contains manually segmented binary masks, as well as
aligned depth and color frames. There are 10 classes of gestures, performed by 20 subjects,
as seen in Figure 17. The images are obtained by a hand-held Realsense R© camera, similar
to the one used in this work. Although the overall number of images is comparable with
the Massey dataset, there are more images per gesture, since this database contains 26
fewer classes. The classes are also simpler, since the main difference between gestures is
the number of raised fingers. Similar to the Massey subsets, there are three datasets based



Chapter 5. Methodology 42

on OUHANDS, namely OUHANDS-G, OUHANDS-B and OUHANDS-D, corresponding
to grayscale, binary and depth data respectively.

Figure 17 – Ten gestures with binary mask, depth data and RGB frames from the
OUHANDS dataset.

Source – Matilainen et al. (2016)

5.1.3 LaRED

LaRED (HSIAO et al., 2014) is a large dataset with 81,000 images, containing color,
depth and segmentation data. It contains 27 static gestures obtained from 10 subjects (five
males and five females), illustrated in Figure 18. This database can be further extended to
243,000 images by applying rotation. Differently from other datasets used in this work,
LaRED is automatically segmented based on depth data. This means that sometimes
segmentation is not ideal, but is closer to a realistic application, where segmentation error
are expected. Also note that there are small difference between gestures G1 and G3, G4

and G5, G14 and G15, G23 and G27, among others. The depth and binary data are used
to generate LaRED-D and LaRED-B subsets. RGB channel is not aligned with depth
channel in this database, and so, a subset with grayscale images was not generated. This
is not a significant drawback, since grayscale and binary images are already compared
using Massey and OUHANDS databases.
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Figure 18 – 27 gestures from the LaRED dataset.

Source – Hsiao et al. (2014)

5.2 Validation technique
The datasets used in this work contain gestures from more than one subject

(BARCZAK et al., 2011; HSIAO et al., 2014; MATILAINEN et al., 2016). This makes it
possible to use two different validation techniques:

• Holdout: 80% of the dataset is used for training and 20% is separated for testing. The
selection is random and gestures from any subject (although not the same image) in
the dataset can appear in both training and testing subsets.

• Leave-one-subject-out cross-validation: consider S as the total number of subjects in
the dataset. One of the subjects is separated for testing and the rest (S − 1) is used
for training. This process is repeated S times, one for each subject.

While holdout is a more common validation technique, leave-one-subject-out is
more challenging as the classifier is tested with a set of gestures from a new person. Thus
it is useful to assess how the recognition would perform when a new subject is using a
previously trained system, i.e. the classifiers generalization capability. The results presented
in this work are averaged across ten repetitions for both validation methods.

5.3 Statistical test for comparisons of results
As suggested in Demšar (2006), the Wilcoxon signed-rank test is used to compare

results in terms of accuracy. The signed-rank test is a non-parametric hypothesis test
for two samples. In the context of this work, the test is always applied with a level of
significance of 5% considering samples of n accuracy results of two classifiers. The null



Chapter 5. Methodology 44

and alternative hypotheses of the test are:

H0 : the two classifiers are equivalent (5.1)

H1 : the two classifiers are not equivalent (5.2)

This test ranks the absolute value of the differences between (related) measurements
of two samples. The differences of the paired measurements are calculated and, subsequently,
the absolute values of the results are ranked and grouped as positive and negative according
to the signs of the respective differences. Null differences can be ignored. The minimum
between the sum of ranks in the positive group and the sum of ranks in the negative group,
both expressed in Equation (5.3), is the computed test statistic. The signed-rank test
contains a table of critical values which is used to assess if the null hypothesis is rejected.

R+ (−) =
∑

di>0 (di<0)
rank(di) (5.3)

5.4 System setup
The experiments were conducted on the same computer. Relevant configuration

characteristics are listed below:

• Hardware:

– Processor: AMD FXTM 8320E Eight-Core

– Installed RAM: 16 GB

– GPU model: GeForce R© GTX 1070

• Software:

– Operational system: Linux Mint 18.1

– Python version: 3.5

– OpenCV library version: 3.2

– Tensorflow library version: 1.0.1

– Keras library version: 2.0.3

5.5 Hyperparameter selection
Even a small convolutional network has a large number of parameters associated

with its architecture, such as the number of layers, size of filtering windows, number of
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fully connected neurons, etc. Changes in these parameters may have a significant effect on
the overall performance of the network.

The hyperparameter selection task usually has high dimensions and small fitness
evaluation budget (high computational cost per evaluation). In order to avoid manual
tuning, we use the Tree-of-Parzen-Estimators (TPE) algorithm, introduced by Bergstra et
al. (2011), to search the parameter space. Given that y = f(x) is an observation of the
model with hyperparameters x, TPE algorithm is used to iteratively generate samples
of y based on previous observations (DOMHAN; SPRINGENBERG; HUTTER, 2015;
BERGSTRA; YAMINS; COX, 2013).

The feature fusion-based convolutional neural network described in this work has
several parameters that can be adjusted by a search algorithm—TPE. These parameters
are given below. Space exploration values are based on experimental evaluation and
similar applications found in literature, such as Chevtchenko et al. (2018), Oyedotun and
Khashman (2016), Nasr et al. (2016) and Yamashita and Watasue (2014). The parameters
are:

• Activation function for fully connected layers: sigmoid or softmax.

• Size of a convolutional kernel (kc × kc): 3×3 or 5×5.

• Number of convolutions in the first layer (Nc1): {4, 8, 16, 32}.

• Number of convolutions in the second layer (Nc2): {4, 8, 16, 32}.

• Hidden neurons in the fully connected layers (Nh): {50, 100, 150, 200, 300}.

• Dropout rate before the fully connected layer: continuous, between 0 and 100%.

• Dropout rate after the fully connected layer: continuous, between 0 and 100%.

• Zernike moments order (n): {0, 5, 10, 15, 20, 25}. Order 0 means that the Zernike
moments are not extracted. This is permitted due to higher computational cost of
these features (See Figure 19b).

• Gabor filter parameters:

– σ: continuous, between 0.001 and 1.

– θ: continuous, between 0.001 and π.

– λ: continuous, between 0.001 and π.

– γ: continuous, between 0.001 and 1.

– ψ: continuous, between 0.001 and π.
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Figure 19 – Comparison of feature extraction time for Gabor features, Hu moments and
contour properties (left) and Zernike features of maximum order 5, 10 and 15
(right).

(a) (b)

Source – The author

The computational costs of the classical features considered in this work are
compared in Figure 19 as a function of image size. The feature extraction time is averaged
across 100 images for each image size and the image size is varied from 16×16 to 64×64
pixels. As can be seen from the graph in Figure 19b, Zernike moments have a significantly
higher computational cost than other features.

The Massey-G subset is used to evaluate each model proposed by the TPE algorithm.
More specifically, gestures from the subject ‘hand5’ are separated as validation, while
the other subjects are used for training. The recognition rate on subject ‘hand5’ is used
as fitness function because this subject is the most challenging from the dataset and
thus provides better margin for optimization. Note that only subject ‘hand5’ is used
for optimization and thus the resulting model is not biased towards other subjects in
the Massey-G subset. There is obviously no bias towards other OUHANDS not LaRED
datasets, since these are not considered for optimization. Finally, TPE algorithm could also
be used on other datasets, which would possibly result in a different set of hyperparameters.

The hyperparameter selection loop is executed for 150 iterations, thus evaluating
150 different models. Each model returns validation accuracy on ‘hand5’ and average
classification time per image. Figure 20 shows the average and best recognition rates
obtained during this process. As new models are evaluated, the TPE algorithm becomes
more likely to generate better models.
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Figure 20 – Average and best recognition rates obtained during the hyperparameter selec-
tion loop.

Source – The author

Although only validation accuracy is used as fitness function, classification time is
also recorded and is used to support the selection of a final model. From 150 architectures
proposed by TPE, we select the one with best recognition rate and with real-time capability
of at least 30 fps (or 33 ms). Table 3 contains the list of hyperparameters selected for the
proposed FFCNN architecture.

Table 3 – Hyperparameters of the proposed FFCNN architecture

Hyperparameters
Activation function for conv. layers ReLU
Activation function for FC layers Sigmoid

Size of convolutional kernel 5×5
Number of convolutions in 1st layer 32
Number of convolutions in 2nd layer 16

Hidden neurons in FC layers 200
Dropout rate before FC layer 61%
Dropout rate after FC layer 76%

Hidden neurons in auxiliary FC layer 200
Order of Zernike moments 5

Gabor filter parameters

σ: 0.35
θ: 0.67
λ: 0.57
γ: 0.23
ψ: 0.37
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Figure 21 – A convolutional network, denoted as CNN1, proposed by Oyedotun and
Khashman (2016). N is the number of classes in the dataset.

Source – The author

5.6 Implemented models
This section details the deep learning architectures considered in this work. For

comparison and benchmarking, we have selected recently proposed convolutional models
that could be applied to 2D images. These models are denoted as CNN1, CNN2 and
CNN3, based on Oyedotun and Khashman (2016), Nasr et al. (2016) and Ji et al. (2016),
respectively. Two commonly referred large convolutional networks are also used: VGG16
(SIMONYAN; ZISSERMAN, 2014) and MobileNet (HOWARD et al., 2017).

All models are limited to train for a maximum of 2,000 epochs. The classification
process is interrupted if the training accuracy does not change for 100 epochs. Nesterov
Adam optimizer (DOZAT, 2016), following parameters provided in the paper, was experi-
mentally selected for CNN1, CNN2, CNN3 and FFCNN architectures. Due to large number
of trainable parameters, VGG16 and MobileNet architectures were found to converge
better using a stochastic gradient descent (SGD) optimizer with constant learning rate of
0.001, 0.9 momentum and without use of Nesterov momentum.

5.6.1 CNN1

Proposed by Oyedotun and Khashman (2016), this is a single-channel convolutional
neural network. A 5×5 kernel is used for the convolution operations. First convolutional
layer receives a single-channel image and convolves it through 6 kernels, resulting in 6 maps
of size 28×28. Then a pooling windows with size 2×2 is used for subsampling, generating
six feature maps of size 14×14. A second convolution with 12 kernels and another pooling
layer generate 12 feature maps of size 5×5. Finally, the 12×5×5 feature map is flattened
to a vector with 300 scalars. A fully connected multilayer perceptron with 400 neurons in
the hidden layer is used to classify the image. The number of neurons in the output layer
is the same as number of classes in the dataset—N . A log-sigmoid activation function is
used for all layers. This network is depicted in Figure 21.
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Figure 22 – A convolutional network, denoted as CNN2, proposed by Nasr et al. (2016).

Source – The author

Figure 23 – An ensemble of 5 convolutional networks, denoted as CNN3, with majority
voting proposed by Ji et al (2016).

Source – The author

5.6.2 CNN2

Proposed by Nasr et al. (2016), compared to CNN1, this network employs more
filters in convolutional layers but less neurons in the fully connected layer. The input image
size is set to 50×50. The first convolutional layer has 50 filters of size 5×5 and the second
has 20 kernels with size 3×3. The result of the second pooling layer is flattened into a
vector with 980 scalars. The fully connected layer has 50 hidden neurons. This network is
illustrated in Figure 22.

5.6.3 CNN3

Proposed by Ji et al. (2016), this is an ensemble of five convolutional neural
networks. The architecture of each network is similar to CNN1, with input image of size
28×28. The final classification is made by assigning the most voted class by all networks.
Figure 23 depicts the structure of this network.
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5.6.4 VGG16

A famous convolutional network, proposed by Simonyan and Andrew (2014). The
input image is resized to 48×48 pixels. The top, fully connected layers are removed and
replaced by a fully connected layer with 50 neurons and an output layer with the same
number of neurons as classes. Only this last two layers have their weights adjusted during
the training step. The weights of other layers are obtained from the original network,
trained on ImageNet dataset.

5.6.5 MobileNet

Proposed in 2017 by Howard et al. (2017), this is a new model of convolutional
networks that aim to be employed on mobile devices. The model used in this work is
denoted as ‘1.0 MobileNet-224’ in the original article. As with VGG16, the input image is
resized to 48×48 pixels and the top fully connected layers are replaces by a fully connected
layer with 50 neurons, followed by an output layer. The weights of this network are also
pretrained on the ImageNet dataset.
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6 Experimental results

The objective of this chapter is to evaluate the convolutional architectures CNN1
(OYEDOTUN; KHASHMAN, 2016), CNN2 (JI et al., 2016), CNN3 (JI et al., 2016),
VGG16 (SIMONYAN; ZISSERMAN, 2014), MobileNet (HOWARD et al., 2017) and the
proposed FFCNN on Massey (BARCZAK et al., 2011), OUHANDS (MATILAINEN et
al., 2016) and LaRED (HSIAO et al., 2014) datasets, using validation methods presented
in Section 5.2.

The experiments are averaged across 10 repetitions and are performed using holdout
and leave-one-subject-out validations. For each repetition using holdout validation the
dataset is randomly divided in training (80%) and testing (20%), as described in Section
5.2. For leave-one-subject-out cross-validation each repetition is averaged across all subjects
in the dataset. For instance, Massey dataset contains five subjects, thus for each repetition,
a different subject is selected for testing. Considering five subjects and ten repetitions, a
single result for leave-one-subject-out cross-validation, such as a cell in Table 5 is obtained
from fifty experiments. Average and standard deviation recognition rates are presented.
Furthermore, we have used the Wilcoxon statistical test with a 5% level of significance to
compare results (DEMŠAR, 2006). For any table, the best result in terms of accuracy is
compared against others in the same table. The best result is highlighted along with the
statistically equivalent ones.

6.1 Massey dataset
Initially all architectures described in Section 5.6 are compared using Massey

dataset with holdout and leave-one-subject-out validations. Table 4 compares recognition
rates of different models on Massey-G (grayscale) and Massey-B (binary) subsets. The
highlighted result is statistically better than other results in this table.

Table 4 – Comparison of accuracy on Massey subsets using holdout validation

Architecture
model Massey-G Massey-B

VGG16 92.20 (1.09) 86.62 (2.01)
MobileNet 93.89 (1.59) 93.73 (1.74)
CNN1 96.81 (0.73) 95.90 (1.42)
CNN2 96.97 (0.93) 96.16 (1.05)
CNN3 96.97 (0.45) 95.86 (0.81)
FFCNN 98.05 (0.90) 96.93 (0.70)



Chapter 6. Experimental results 52

Figure 24 – Two similar gestures from the Massey ASL dataset. There is significant loss of
relevant information after conversion from grayscale to binary image, which in
this case may cause the two gestures to be indistinguishable from one another.

(a) Gesture ‘a’ (b) Gesture ‘s’

Source – Barczak et al. (2011)

Table 5 contains a similar comparison using leave-one-subject-out validation. The
highlighted result—FFCNN on the Massey-G subset—is significantly better than other
results in the same table. The usage of grayscale images results in better accuracy, this can
be attributed to a number of complex gestures in this dataset. For instance, the gestures
‘a’ and ‘s’ are very similar, as illustrated in Figure 24, and are better distinguished by
grayscale than binary images.

Table 5 – Comparison of accuracy on Massey subsets using leave-one-subject-out validation

Architecture
model Massey-G Massey-B

VGG16 61.42 (0.82) 57.47 (1.68)
MobileNet 62.53 (1.36) 70.40 (1.60)
CNN1 73.86 (1.04) 76.61 (0.40)
CNN2 79.04 (0.85) 77.62 (1.26)
CNN3 78.51 (0.70) 79.88 (0.72)
FFCNN 84.02 (0.59) 82.58 (0.81)

The proposed FFCNN architecture obtains better results than state-of-the-art
architectures. Also, as can be seen by comparing results for any model in Tables 4 and
5, leave-one-subject-out validation is more challenging for this dataset. This is probably
due to a small number of subjects in the Massey dataset (5 subjects), combined with a
large number of gestures (36 gestures). This can be difficult because there are variations
in proportions across subjects’ hands, as shown in Figure 25. In our experiments, subject
5 was the most challenging when selected for the Test subset.

While accuracy is critical for a good model for posture recognition, it also has to
perform in real time. Thus, Table 6 compares the performance of the models for training
and recognition of a single image. This experiment is conducted with and without a
GPU and the models are trained and evaluated on Massey-G subset. The training time is
averaged across 10 repetitions and the inference time is averaged across 503 images.
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Figure 25 – Gesture ‘f’ from the Massey dataset performed by each of the five subjects.

Source – Barczak et al. (2011)

Table 6 – Comparison of training and inference times on the Massey dataset with and
without a GPU

With GPU Without GPU
Architecture

model
Training per
epoch (s)

Recognition
time (ms)

Training per
epoch (s)

Inference
time (ms)

VGG16 0.9 6.0 89.8 55.7
MobileNet 2.0 22.6 57.5 19.3

CNN1 0.2 1.7 1.2 1.5
CNN2 0.3 1.7 10.3 2.9
CNN3 0.9 8.4 3.8 4.9

FFCNN 0.3 9.2 5.2 7.8

Despite GPU providing an obvious improvement in training time, there is usually
no benefit in using a GPU for real-time recognition. For a network to recognize a specific
gesture, both the gesture data and a network have to be transfered to a GPU shared
memory. This process creates an overhead that makes smaller architectures, such as CNN1,
CNN3 and FFCNN faster to process on a CPU. A large network such as VGG16 has to be
used on a computer with a GPU for real-time applications. While MobileNet is designed
to be used on devices with limited processing capabilities, it is still a large network and is
slower to train on both cases.

6.2 OUHANDS dataset
Recognition rates of the models are evaluated on OUHANDS subsets using holdout

validation in Table 7. The highlighted results are statistically equivalent and significantly
outperform other results in the same table.

Table 7 – Comparison of accuracy on OUHANDS subsets using holdout validation

Architecture
model OUHANDS-G OUHANDS-B OUHANDS-D

VGG16 90.00 (1.57) 89.50 (2.73) 90.80 (1.29)
MobileNet 94.60 (0.68) 95.80 (0.75) 95.81 (0.65)
CNN1 97.50 (0.67) 97.90 (0.50) 97.55 (0.50)
CNN2 96.83 (0.83) 97.68 (0.70) 97.48 (0.64)
CNN3 97.25 (0.64) 98.01 (0.51) 98.06 (0.46)
FFCNN 98.75 (0.48) 98.68 (0.33) 98.48 (0.63)
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Table 8 compares the same architectures using leave-one-subject-out validation.
The FFCNN model on the grayscale subset is shown to be significantly better than other
combinations of models and subsets.

Table 8 – Comparison of accuracy on OUHANDS subsets using leave-one-subject-out
validation

Architecture
model OUHANDS-G OUHANDS-B OUHANDS-D

VGG16 88.01 (0.71) 88.92 (0.64) 88.46 (0.52)
MobileNet 92.67 (0.65) 96.66 (0.47) 95.67 (0.40)
CNN1 97.04 (0.27) 97.80 (0.21) 97.03 (0.23)
CNN2 97.40 (0.25) 98.11 (0.18) 97.52 (0.39)
CNN3 97.20 (0.25) 98.53 (0.17) 98.20 (0.17)
FFCNN 99.20 (0.12) 99.03 (0.07) 99.00 (0.14)

It is worth noting that this dataset contains 20 subjects, which means that when
using leave-one-subject-out cross validation each model is trained on 19 subjects, or 95%
of data. This probably accounts for better performance of some models and overall lower
standard deviation when comparing both validation methods in Tables 7 and 8. The
proposed feature fusion-based architecture consistently provides better recognition rate,
regardless of validation method or subset (binary, grayscale or depth).

Furthermore, there is significant difference in performance of large and small
networks. Based on the experiments above we conclude that there is no advantage in using
large multipurpose networks for a more specific task, such as hand posture recognition, as
this networks did note achieve good recognition rate or real-time performance. Note that
the smaller architectures could be used on a wider variety of platforms, without the need
of a GPU.

6.3 LaRED dataset
We further compare the networks proposed by related works, namely, CNN1, CNN2

and CNN3, against the proposed FFCNN architecture on a dataset with 81,000 images.
The LaRED dataset is divided in two subsets (binary and depth) and is evaluated using
the holdout and leave-one-subject-out validation methods.

The results for holdout validation are presented in Table 9. The highlighted results
are statistically equivalent to the best result in this table.
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Table 9 – Comparison of accuracy on LaRED subsets using holdout validation

Architecture
model LaRED-B LaRED-D

CNN1 99.60 (0.05) 97.62 (0.21)
CNN2 99.52 (0.07) 97.04 (0.36)
CNN3 99.57 (0.04) 96.44 (0.16)
FFCNN 99.59 (0.04) 95.30 (0.59)

Considering holdout validation in Table 9, most models obtained close to 100%
accuracy. In the same experiment the binary subset is significantly better than the depth,
this suggests that gestures in LaRED dataset are recognizable only by the binary mask
and depth data does not provide additional information, this hypothesis will be tested
further.

Table 10 compares models using leave-one-subject-out validation. The combination
of FFCNN and the depth subset obtains the best accuracy.

Table 10 – Comparison of accuracy on LaRED subsets using leave-one-subject-out valida-
tion

Architecture
model LaRED-B LaRED-D

CNN1 83.33 (0.61) 80.53 (0.44)
CNN2 84.44 (0.54) 83.08 (0.38)
CNN3 86.60 (0.28) 85.49 (0.30)
FFCNN 91.23 (0.17) 92.53 (0.24)

As seen in Table 10, leave-one-subject-out cross-validation reduces the performance
of all networks, compared to holdout validation. The proposed architecture still achieves
a significantly better recognition rate of 92.53% on LaRED-D. In the following section,
another factor that can significantly affect recognition rate is investigated. We also verify
whether the difference between binary, depth and gray representations continues to be
significant.

6.4 Impact of preserving aspect ratio
Finally, the images in a dataset are resized prior to feature extraction and training.

This is done to speed-up computations and to make the image compatible with feature
extraction methods, such as convolutional networks. An image can be resized with or
without preservation of the aspect ratio of the gesture, as illustrated in Figure 26. All
prior experiments resize the image without preserving the aspect ratio, as is done by
several related works (OYEDOTUN; KHASHMAN, 2016; NASR-ESFAHANI et al., 2016;
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Figure 26 – A gesture from the Massey dataset resized with and without aspect ratio
preservation.

Source – Barczak et al. (2011)

Table 11 – Evaluation of the impact of aspect ratio on the FFCNN architecture using
leave-one-subject-out validation. A Wilcoxon test is applied in order to verify
the significance of the improvement in accuracy.

Dataset Subset Without
aspect ratio

With
aspect ratio

Significant
improvement?

Massey Grayscale 84.02 (0.59) 84.27 (0.60) No
Massey Binary 82.58 (0.81) 83.82 (0.73) Yes

OUHANDS Grayscale 99.20 (0.12) 99.18 (0.16) No
OUHANDS Binary 99.03 (0.07) 99.45 (0.09) Yes
OUHANDS Depth 99.00 (0.14) 99.45 (0.14) Yes
LaRED Binary 91.23 (0.17) 93.06 (0.18) Yes
LaRED Depth 92.53 (0.24) 93.11 (0.16) Yes

JI et al., 2016; AOWAL et al., 2014; YAMASHITA; WATASUE, 2014). When aspect ratio
is preserved, the remaining pixels are filled with zero in order to still produce an image of size
32×32.TheinfluenceoftheaspectratioontherecognitionrateoftheFFCNNarchitectureisevaluatedinTable11.

Considering that the best recognition rates from Tables 8 and 10 are improved in
Table 11 we conclude that: 1) preserving aspect ratio while rescaling provides a significant
advantage to the FFCNN architecture and 2) there is significant difference between
depth and binary data. This conclusions are supported by comparisons in Figures 27 and
28, obtained from ten repetitions using leave-one-subject-out validation. For example,
recognition rate of gesture G8 is improved 7.5% by preserving the aspect ratio, otherwise
G8 can be easily confused with gestures G1 and G3, presented in Figure 18. Furthermore,
the usage of binary data provides some benefits over depth and grayscale: 1) a binary
image can be obtained from any camera, while depth image requires an RGB-D camera
such as RealSenseTM, 2) feature extraction from binary data is potentially faster and can
be done by a simpler and more robust convolutional network (NASR-ESFAHANI et al.,
2016; YAMASHITA; WATASUE, 2014; CAMBUIM et al., 2016). Note that Massey dataset
contains more complex gestures, which seem to be better recognized from grayscale images.
In the next section, a real-time recognition system based on FFCNN using a binary mask
is presented.
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Figure 27 – Accuracy of the most misclassified gestures by the FFCNN architecture in the
LaRED-B subset (in black) and respective accuracy improved by preserving
aspect ratio (in blue). For qualitative comparison see Figure 28.

Source – The author

Figure 28 – Gestures from the LaRED-B subset with the most improved recognition by
preserving aspect ratio. For quantitative comparison see Figure 27.

(a) G8 (b) G13 (c) G5

(d) G23 (e) G3 (f) G18

Source – The author



Chapter 6. Experimental results 58

6.5 Real-time recognition
From experiments in Section 6, considering accuracy as well as speed, we demon-

strated that FFCNN as a viable model for real-time recognition. In this section we present
a system based on this model that recognizes gestures from OUHANDS and LaRED
datasets in real-time.

The main steps of the recognition system are described in Figure 14a. Images are
converted to binary representation during the segmentation step. The average time required
for steps 5–9 can be seen in Table 12. The total time required to process image, extract
features and recognize gestures is 23.02 ms, which is more than enough for recognition
in real time at 30 fps. In fact the frame rate is limited by the camera, as new frames are
obtained every 33.33 ms.

A video of real-time recognition of 10 postures from OUHANDS dataset and 27
postures from LaRED dataset is provided as supplementary material. From this video
it can be seen that the proposed system recognizes a variety of gestures with sufficient
robustness and accuracy. Recognition of the most challenging cases from LaRED dataset
is also presented in Figure 29.

The most common reason for incorrect classification is presented in Figure 30, where
the forearm is segmented along with the hand. As explained in Section 5.1.2, OUHANDS
dataset is also intended for evaluation of hand detection and is manually segmented. On
the other hand, LaRED dataset is automatically segmented from depth images and can
be used to train a more robust classifier.
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Figure 29 – Some of the most similar gestures from the LaRED dataset being correctly
recognized in real-time. The recognized class is highlighted from a list of
possible gestures.

(a) G1 (b) G2

(c) G3 (d) G13

(e) G20 (f) G21

(g) G23 (h) G27

Source – The author
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Figure 30 – A gesture with faulty segmentation correctly recognized from the LaRED
dataset and incorrectly recognized from the OUHANDS dataset. The classifier
trained on the OUHANDS dataset mistakes the actual gesture ‘B’ for a similar
gesture ‘F’.

(a) LaRED (b) OUHANDS

Source – The author

Table 12 – Average speed measured for each main component of real-time recognition.

Step Time (ms) %
(5) Segmentation 6.26 27

(6) Crop hand image 1.45 6
(7) Resize to 32×32 0.53 2
(8) Extract features 7.73 34
(9) Recognition 7.04 31

Total 23.02 100
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7 Conclusion and final remarks

A novel architecture is proposed, based on a convolutional neural network and
classical feature descriptors. This feature fusion-based convolutional network (FFCNN) is
thoroughly evaluated, outperforming state-of-the-art models on different benchmarking
datasets. Based on performed experiments we can highlight the most important findings:

• The proposed FFCNN obtained state-of-the-art recognition rate on three datasets
and image representations.

• For smaller problems, such as hand posture recognition, it is preferable to use smaller,
custom built convolutional networks, rather than using pretrained large ones, such
as VGG16.

• On the evaluated datasets, binary images can provide a recognition rate equivalent to
depth or grayscale representations. An additional advantage is the potential economy
in size and computational cost of the recognition system based on binary images.

• Leave-one-subject-out is a more challenging validation technique, but as suggested
in related works, it better represents the performance of the system in real scenarios.
It simply may not be possible to retrain the system for each new user.

• The aspect ratio of segmented hand should be preserved during rescaling, this is
shown to significantly improve the performance of our classifier.

7.1 Contributions
The main contributions of this work are summarized as follows:

• Recent convolutional neural networks are evaluated on three hand posture datasets:
Massey (2,515 images) (BARCZAK et al., 2011), LaRED (81,000 images) (HSIAO et
al., 2014) and OUHANDS (3,000 images) (MATILAINEN et al., 2016). The datasets
are further divided in depth, binary and grayscale subsets.

• The comparisons are made using two validation techniques encountered in literature—
holdout and leave-one-subject-out.

• A novel architecture is proposed and compared against state-of-the-art methods,
considering accuracy and recognition speed. The proposed architecture is shown to
outperform related methods across different datasets and any of three representations:
binary, depth or grayscale.
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• Resizing of gestures with constant aspect ratio is shown to have significant influence
on recognition rate.

• A real-time gesture recognition system based on the proposed scheme is implemented
with a 3D RealSenseTM camera. A demo video is provided (see Appendix A).

7.2 Future work
As future endeavors we suggest to investigate other methods for hyperparameter

selection and optimization, such as multi-objective algorithm. We also intend to evaluate
a greater number of hyperparameters related to micro and macro properties of the
architecture, such as number of layers and methods of feature fusion. Fusion in different
stages could be evaluated in terms of accuracy and speed benefits. Ensemble of the proposed
classifiers is also expected to improve recognition results and could be evaluated on some
applications. Note that an ensemble of FFCNNs only requires a single feature extraction
step, as the same features would be fed to multiple convolutional channels.

A hand detection step can be introduced in order to make segmentation more
robust to the position of hand and possibly eliminate the need of a depth camera. Also,
hand segmentation used in this work is fairly simple and could be greatly improved.

Although the focus of this work is static hand gestures, the proposed method can
be extended to recognize a wide range of dynamic gestures. This can be done by adding
dynamic information, such as position, orientation and velocity to the classified posture.
A sequence of postures can be recognized as a dynamic gesture by a probabilistic method,
such as the Hidden Markov Model (HMM).

Finally, the FFCNN classifier trained on the OUHANDS dataset is available upon
request, in order to encourage several potential applications in smart houses, vehicle
infotainment systems, operating theaters, among others. An embedded system for out-of-
the-box hand posture and gesture recognition is also being developed.

7.3 Publications
The following works have been published or submitted for publishing during this

graduate program:

• “Multi-objective optimization for hand posture recognition.” — Expert Systems with
Applications (2018): pp 170–181.

• “Detecting people from beach images” — Proceedings of the IEEE conference on
Tools with Artificial Intelligence (2017): pp 636–643.
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• “A convolutional neural network with feature fusion for real-time hand posture
recognition” — preprint submitted to Applied Soft Computing on February, 2018.

• “Deep learning for people detection from beach images” — submitted to BRACIS
2018 on May, 2018.
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APPENDIX A – Supplementary material

A demo video with real-time recognition can be found at:
<https://youtu.be/kW3nnw2xrAw>.

https://youtu.be/kW3nnw2xrAw
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