
Priscila Gabriele Marques dos Santos

QUANTUM ENHANCEMENTS FOR MACHINE LEARNING BASED

ON A PROBABILISTIC QUANTUM MEMORY

Dissertação de Mestrado

Universidade Federal Rural de Pernambuco

secretaria@preg.ufrpe.br

http://www.ufrpe.br/br/graduacao

RECIFE
2019

http://www.ufrpe.br/br/graduacao

 Dados Internacionais de Catalogação na Publicação (CIP)
 Sistema Integrado de Bibliotecas da UFRPE
 Biblioteca Central, Recife-PE, Brasil

S237q Santos, Priscila Gabriele Marques dos
 Quantum enhancements for machine learning based on a
 probabilistic quantum memory / Priscila Gabriele Marques dos
 Santos. – 2019.
 55 f. : il.

 Orientador: Adenilton José da Silva.
 Dissertação (Mestrado) – Universidade Federal Rural de
 Pernambuco, Programa de Pós-Graduação em Informática
 Aplicada, Recife, BR-PE, 2019.
 Inclui referências.

 1. Computação quântica 2. Aprendizado do computador
 3. Redes neurais (Computação) 4. Algorítmos computacionais
 I. Silva, Adenilton José da, orient. II. Título

 CDD 004

Universidade Federal Rural de Pernambuco

Departamento de Estatística e Informática
Programa de Pós Graduação em Informática Aplicada

Priscila Gabriele Marques dos Santos

QUANTUM ENHANCEMENTS FOR MACHINE LEARNING BASED
ON A PROBABILISTIC QUANTUM MEMORY

Dissertação de Mestrado apresentada ao Programa de Pós

Graduação em Informática Aplicada do Departamento de

Estatística e Informática da Universidade Federal Rural de

Pernambuco como requisito parcial para obtenção do grau

de Mestre em Informática Aplicada.

Orientador: Adenilton José da Silva

RECIFE
2019

Dissertação de Mestrado apresentada por Priscila Gabriele Marques dos Santos ao Programa
de Pós Graduação em Informática Aplicada do Departamento de Estatística e Informática da
Universidade Federal Rural de Pernambuco sob o título Quantum enhancements for Machine
Learning based on a Probabilistic Quantum Memory, orientada pelo Prof. Adenilton José
da Silva e aprovada pela banca examinadora formada pelos professores:

———————————————————————–
Prof. Adenilton José da Silva

Departamento de Computação/UFRPE

———————————————————————–
Prof. Tiago Alessandro Espinola Ferreira

Departamento de Estatística e Informática/UFRPE

———————————————————————–
Prof. Fernando Maciano de Paula Neto

Centro de Informática/UFPE

RECIFE
2019

Agradecimentos

Em especial, aos meus pais, para os quais não há agradecimentos suficientes que expres-
sem o tamanho da minha gratidão. Também, não poderia deixar de mencionar o companheirismo
de Izabella de Moraes e Lara Cardoso. Agradeço enormemente a Rodrigo Sousa, namorado,
cujo apoio e suporte me impulsionaram sempre adiante.

Ao professores da UFRPE. Sobretudo, ao professor Adenilton Silva, que me orientou
nesse trabalho, sempre incentivando minha autonomia nas pesquisas, receptivo a seguir novos
rumos e mudanças de escopo. Agradeço todas as sugestões e conselhos.

Aos colegas de mestrado e do grupo de computação quântica da UFRPE. Em especial a
Rodrigo Sousa e Ismael Cesar, agradeço as colaborações nas pesquisas, as discussões e debates.

Por fim, à FACEPE (Fundação de Amparo à Ciência e Tecnologia de Pernambuco), que
me concedeu apoio financeiro durante o mestrado. Agradeço também ao instituto Serrapilheira,
que financiou as pesquisas do nosso grupo de computação quântica.

No man ever steps in the same river twice, for it’s not the same river and

he’s not the same man.

—HERACLITUS

Resumo

A aprendizagem de máquina quântica surge a partir da interação das áreas de aprendiza-
gem de máquina e computação quântica. Aprendizagem de máquina é um ramo da inteligência
artificial de impacto em diversas áreas que provê aos computadores a habilidade de aprender
de maneira autônoma a partir de experiências. A computação quântica, por outro lado, é um
diferente paradigma computacional. O processamento de informação e comunicação em um
computador quântico faz uso de princípios e propriedades da mecânica quântica, obtendo efeitos
computacionais que não podem ser realizados eficientemente em computadores clássicos. A
computação quântica levanta novas possibilidades a partir de abordagens promissoras que fazem
uso desses efeitos. De fato, propostas de algoritmos quânticos demonstram seu potencial em
superar a eficiência dos algoritmos clássicos em algumas tarefas.

O presente trabalho busca contribuir com o campo de aprendizagem de máquina quântica.
Para tanto, foi investigado o uso e as aplicações de uma memória probabilística quântica como
ferramenta para propor algoritmos de aprendizagem de máquina melhorados. Aqui, a memória
quântica foi utilizada para desenvolver procedimentos melhorados para as tarefas de validação
cruzada, seleção e avaliação de arquiteturas de redes neurais artificiais. Além disso, um modelo
de rede neural sem peso que utiliza a memória quântica foi avaliado e melhorado.

Palavras-chave: computação quântica, aprendizagem de máquina, redes neurais, aprendizagem
de máquina quântica, memórias quânticas, memórias quânticas probabilísticas

Abstract

Quantum machine learning arises from the interaction of fields of machine learning and
quantum computing. Machine learning is a branch of artificial intelligence relevant in many areas.
It provides computers the ability to learn autonomously from experience. Quantum computing,
on the other hand, is a different computational paradigm. The processing of information and
communication in a quantum computer makes use of the principles and properties of quantum
mechanics. With this, it is possible to achieve computational effects that cannot be efficiently
reached classically. Quantum computing raises new possibilities through promising approaches
that make use of these effects. In fact, proposed quantum algorithms demonstrate their potential
in outperforming classical algorithms in some tasks.

The present work aims to contribute with the field of quantum machine learning. In
order to do so, the use and applications of a quantum probabilistic memory as a tool to propose
improved machine learning algorithms is investigated. Here, the quantum memory is used to
develop improved procedures for tasks such as cross-validation, and the selection and evaluation
of artificial neural network architectures. In addition, a weightless neural network model using
the probabilistic quantum memory was evaluated and improved.

Keywords: quantum computing, machine learning, neural networks, quantum machine learning,
quantum memory, probabilistic quantum memory

Sumário

1 Introduction 9
1.1 Motivation . 11
1.2 Objectives . 12

1.2.1 General . 12
1.2.2 Specific . 12

1.3 Outline . 13
1.4 Conclusion . 13

Referências 15

2 First Contribution 18

3 Second Contribution 25

4 Third Contribution 40

999

1
Introduction

This work delves into the capabilities and applications of a Probabilistic Quantum
Memory (TRUGENBERGER, 2001) for machine learning methods. Machine Learning, as a
field of study, investigates and develops automated methods for data analysis with the objective
of building learning models capable of self-improvement from processing new data with none or
very little human interference (NASRABADI, 2007).

The field of Machine Learning (ML) (BISHOP, 2006) can be divided into three main
branches, each representing a different learning method. Supervised learning, which deals with
labeled data and is used in classification and regression tasks; unsupervised learning, works with
unlabeled data and is used for data clustering; and reinforcement learning, a method where the
learning is guided by a reward and punishment system. Machine Learning nowadays is seeing
increasingly more applications in industry, business, security, medical diagnostics, consumer
products, etc. o This work focus on supervised learning tasks, in which all data samples used
are labeled with their correct classification. A common practice for evaluating a model involves
dividing the available data into disjoint training and test datasets. The model learns only from
the samples in the training dataset and, afterwards, its performance can be accessed by using it
to classify the test samples and calculate classification accuracy and other metrics. The method
known as k-fold cross-validation (STONE, 1974; GEISSER, 1975) is an evaluation method
commonly used in machine learning. In this method, the data is divided into k disjoint groups or
folds, where each fold is used as a test dataset to evaluate a classifier trained by the remaining
k−1 folds.

A Probabilistic Quantum Memory (PQM) is an associative information storage model
proposed in TRUGENBERGER (2002, 2001). The PQM implements a quantum memory
capable of storing binary patterns on qubits in a uniform quantum superposition. This quantum
superposition can hold all possible patterns for a n-qubits quantum memory register. In order to
retrieve some pattern from the memory an input pattern is passed to the PQM retrieval algorithm
which calculates the Hamming distance from the given input to all the stored patterns. This
procedure works by rotating the memory state based on the given input which results in increasing
the amplitudes of the patterns most close to it, consequently increasing the memory probability

10

of outputting the desired pattern as well.
The PQM model presents certain advantages over classical memory models. Storing

and easily retrieving information is a critical process in light of the huge quantities of data
being generated nowadays (PROVOST; FAWCETT, 2013). Traditional memory architectures
retrieve information by knowing the memory address, where the data is stored. Therefore, to
store in this address-oriented systems it is necessary to worry about the stored information
location and corrupted or incomplete inputs cannot be retrieved (MÜLLER; REINHARDT;
STRICKLAND, 2012). An associative memory, or content-addressable memory, is a model that
retrieves stored information based on its content instead of its storage location. It is possible
to retrieve information from these memories even with incomplete inputs. On the other hand,
associative memories cannot store nearly as many patterns as the address-oriented systems due
to the interference stored patterns exert to each other. The PQM is an associative memory model
and, as its classical counterparts, is able to retrieve information even if the input is noisy or
incomplete. Additionally, the PQM as a quantum model does not have the same constraints
regarding its storage capacity, as it can store all possible n bit patterns.

The PQM as a memory model presents a severe drawback. While a quantum super-
position can be used in order to achieve an optimal storage capability, it also implies that all
the content stored on the memory will be lost after an input is given to the retrieval procedure.
This occurs due to the quantum measurement that has to be performed on the memory in order
to obtain the output, which is obtained by operating on the memory state. The PQM is said
to suffer from fundamental issues (DUNJKO; BRIEGEL, 2018), which reduces its value to
that of just a creative idea and of one of the first proposals involving amplitude encoding of
classical data, rather than being a complete proposal. In BRUN et al. (2001) it is argued that
the PQM model has poor performance and presents no storage advantage over the classical
models since the same scheme could be devised classically. However, these claims are contested
by TRUGENBERGER (2003), where it is pointed out that the classical probabilistic database
search scheme proposed in order to simulate the PQM does not accurately represents how the
PQM actually works. In SCHULD; SINAYSKIY; PETRUCCIONE (2014) the model is further
examined, the authors conclude that it can be seen as an asset for pattern classification tasks but
the Hamming distance constitutes as a rather imprecise approach.

In short, the PQM as a memory model has its advantages but also presents limitations. In
this work, the main idea consists in using the PQM as a data structure to manipulate information
in superposition. Similar approach was first seen in MENNEER; NARAYANAN (1995), where
a classical model inspired on quantum computing is proposed, in which patterns are presented to
a set of superposed neural networks. Quantum approaches that follow the idea of training neural
networks in superposition are devised in PANELLA; MARTINELLI (2011); RICKS; VENTURA
(2004). In SILVA; OLIVEIRA (2017), the PQM is used to evaluate neural network architectures.
In DUNJKO; TAYLOR; BRIEGEL (2017) quantum computation and reinforcement learning
are used to evolve the parameters of a classifier in superposition. In SILVA; LUDERMIR;

1.1. MOTIVATION 11

OLIVEIRA (2016) neural networks architectures are trained and evaluated in superposition and
a nonlinear quantum operator is used to choose the best architecture.

The remainder of this chapter is organized as follows: Section 1.1 presents the motivations
behind the topics researched. The objectives are displayed in Section 1.2. In Section 1.3, the
papers that form this work are summarized. Finally, Section 1.4 concludes this work with the
main contributions obtained and discusses possible future works.

1.1 Motivation

Nowadays, machine learning techniques are a strong component of new technologies
applications and products. Several aspects of today’s society are incorporating digital solutions
powered by machine learning and AI techniques in what is being called the AI revolution (MA-
KRIDAKIS, 2017). Its great potential in solving everyday problems makes this a highly applica-
ble and researched field which is gathering increasingly attention from governments and industry
that want to gain the upper hand in this revolution. Moreover, machine learning provides ways of
analyzing the relations between multiple features even in large and complex data sets. Machine
learning techniques have been successfully applied to a wide range of problems, from accurate
medical diagnosis and disease assessment (SHEN; WU; SUK, 2017) to mastering complex
games (SILVER et al., 2016) and data mining tasks (WITTEN et al., 2016).

Quantum Computing is another field of study that is considered to be very pertinent. It
consists in a computing paradigm that uses quantum mechanics as a base theory for information
processing and communication (NIELSEN; CHUANG, 2002). Researches in the field are
motivated by an increase in computational power that could be achieved trough this paradigm
that provides a different computational approach FEYNMAN (1982). Using features such as
quantum parallelism and quantum interference, quantum algorithms able to outperform the best
known classical ones have been devised in DEUTSCH; JOZSA (1992); GROVER (1996); SHOR
(1999). These proposals suggest that quantum computation may solve hard problems which
conventional computers are simply not capable of. It is important to consider, for that matter,
that quantum computing is an abstract paradigm which does not have a direct implementation in
technology.

The biggest technology corporations such as IBM, Intel, and Google, are in the race to
build the first universal quantum computer. Even though these devices are still out of reach, some
small-scale quantum computers are currently available. These devices have a few qubits and
gates at disposal. For operations involving 2 qubits or more, the device architecture and qubits
connections must be taken in consideration. It is important to note that these are noisy devices
and it is still a big challenge to deal with the decoherence of quantum states. Bigger quantum
devices, having from 50 to 100 qubits, are expected in the next years (PRESKILL, 2018). These
noisy intermediate-scale computers may outperform conventional classical ones for certain tasks,
in what is being called Quantum Supremacy (HARROW; MONTANARO, 2017). Some quantum

1.2. OBJECTIVES 12

applications have been devised in BEHERA; BANERJEE; PANIGRAHI (2017); FIGGATT et al.
(2017), even for the small-scale devices available nowadays.

These two fields of study, Machine Learning and Quantum Computing (or Quantum
Physics in general), can greatly contribute with each other. There is a pursuit of applying machine
learning to even more difficult tasks, which can demand great computational power. In fact,
ML can be applied to predict or extract information about quantum systems. In MAVADIA
et al. (2017), machine learning is used as a tool to predict quantum state evolution. At the same
time, quantum computing holds the powerful potential of speedup over classical computation.
Various works use quantum computing techniques to propose or enhance ML techniques LLOYD;
MOHSENI; REBENTROST (2013); LLOYD; GARNERONE; ZANARDI (2016); WIEBE;
BRAUN; LLOYD (2012).

Quantum Machine Learning (QML) studies the usage of quantum computation to enhance
machine learning. Several proposals in this field exhibit quantum speedups, meaning they are
able to outperform the best known classical algorithms for that specific task (BIAMONTE et al.,
2017). One of the immediate applications of QML involves quantum data. In similar fashion to
classical machine learning, QML finds patterns in quantum states initialized from classical data
by manipulating these states through quantum operations. The Probabilistic Quantum memory
used in this work is a quantum system which not only holds quantum data but is also capable of
manipulating it in order to search for patterns. The PQM is used as an asset in order to develop
and evaluate quantum enhancements for machine learning.

1.2 Objectives

This section states the general and specific objectives of this work.

1.2.1 General

Achieve machine learning enhancements through the usage of probabilistic quantum
memories.

1.2.2 Specific

� Propose a quantum enhancement for the k-fold cross validation method;

� Devise a method based on the PQM to perform neural network architecture selection;

� Evaluate the quantum memory performance as a classifier and investigate modificati-
ons to improve its accuracy.

1.3. OUTLINE 13

1.3 Outline

The remainder of this work is divided in three chapters composed by papers. The first
work (DOS SANTOS et al., 2018) named Quantum enhanced k-fold cross-validation, was
published on the 7th Brazilian Conference on Intelligent Systems. The second work (DOS SAN-
TOS et al., 2018) named Quantum enhanced cross-validation for near-optimal neural networks
architecture selection, was published on the International Journal of Quantum Information. The
last one, named Evaluation and improvement of a Probabilistic Quantum Memory Weightless
classifier, is an extended version of a recently accepted paper on the 27th European Symposium
on Artificial Neural Network. All the papers composing this work follow the main objective
previously stated in Section 1.2, that is, to achieve machine learning enhancements through the
use of probabilistic quantum memories. This section summarizes each of the three papers which
compose this work.

Chapter 2 presents a quantum method for a k-fold cross-validation with linear-speedup.
The PQM is used to store and evaluate the dataset patterns in superposition. To perform the
validation in all the folds, two additional quantum registers are used in order to distinguish
between folds used for training and validation. With that, the learning is conducted only when
the state of the registers differ. This method performs the validation with only one training
execution, instead of k times. A reduced experimental analysis is conducted to evaluate the
method.

Chapter 3 describes an enhanced architecture selection and evaluation method for neural
networks. It consists in a hybrid quantum-classical algorithm that operates by performing an
enhanced k-fold cross-validation on the dataset and training the neural networks with all the
patterns while storing the results in superposition on the PQM. It has an exponential-speedup
over the classical approach. A classical description of the method with a reduced number of
networks in superposition is used to evaluate the algorithm in a conventional computer.

Chapter 4 evaluates a Weightless Neural Node model based on a PQM. It also proposes a
modification of the model by adding a parameter to the PQM retrieval algorithm. The evaluation
is performed through experiments conducted on a classical computer using the PQM algorithm
description. The models performances were compared against the K-Nearest Neighbors (KNN)
algorithm using public benchmark datasets. The proposed modification has surpassed the
unmodified method over all the datasets and the Weightless Neural Node model has shown
satisfactory results in general when compared to KNN.

1.4 Conclusion

The main contributions of this work are related to the field of quantum machine learning
through the production of quantum enhanced ML techniques. More specifically, the Probabilistic
Quantum Memory capabilities necessary for achieving this result were investigated and explored

1.4. CONCLUSION 14

here. The PQM allows the manipulation of binary patterns in superposition, which can be used
to improve classical machine learning methods.

In supervised learning, the k-fold cross-validation method is used to estimate a classifier
performance, the probability of correctly classifying new data. Each evaluated model must be
trained and tested for each fold, that is, k times. Therefore, the cost of performing a k-fold
cross-validation is O(k×m), where m is the classifier cost. Using the PQM, this method was
improved by performing the validation with all folds in superposition. Since all the folds are
evaluated in one single step, the total cost becomes O(m), achieving a linear speed-up for the
k-fold cross-validation method.

The PQM can also be used to approach an NP complete task like the evaluation and
selection of neural networks architectures. There is no known efficient classical method to
evaluate whether a neural network architecture can learn a given task. This problem has been
approached before with a polynomial algorithm using a non-linear quantum operator. Here,
the problem was tackled by storing and training the neural networks in superposition and also
performing the quantum enhanced k-fold cross-validation. That way, through the use of the PQM
an exponential quantum speed-up for the task was achieved.

Another PQM application investigated here concerns quantum classifiers models. Here,
a quantum weightless classifier model based on the PQM was evaluated using public benchmark
datasets. Also, a modification to this model resulting in a considerable performance improvement
was proposed and evaluated. Evaluation performed on a classical computer showed that the
modified quantum weightless classifier performed better than its unmodified version in all the
tested datasets.

In conclusion, despite the PQM having some drawbacks as a memory model, this work
successfully contributed with new QML techniques and approaches based on it. Nevertheless,
several aspects of the PQM can still be further investigated in future works. For instance, a study
can be made on the influence of different distance functions in comparison to the Hamming
distance. Another possible work is to investigate the application of the proposed methods
to parameter selection tasks for other machine learning models. Regarding the PQM based
weightless classifier, an open investigation path is the construction of the model based in different
architectures. Finally, an important future work could be the realization and evaluation of the
PQM in future quantum computers with enough qubits available.

151515

Referências

BEHERA, B. K.; BANERJEE, A.; PANIGRAHI, P. K. Experimental realization of quantum
cheque using a five-qubit quantum computer. Quantum Information Processing, [S.l.], v.16,
n.12, p.312, 2017.

BIAMONTE, J. et al. Quantum machine learning. Nature, [S.l.], v.549, n.7671, p.195, 2017.

BISHOP, C. M. Pattern recognition and machine learning. [S.l.]: springer, 2006.

BRUN, T. et al. Comment on “Probabilistic Quantum Memories”. Phys. Rev. Lett, [S.l.], v.87,
n.6, p.067901, 2001.

DEUTSCH, D.; JOZSA, R. Rapid solution of problems by quantum computation. Proc. R. Soc.
Lond. A, [S.l.], v.439, n.1907, p.553–558, 1992.

DOS SANTOS, P. et al. Quantum enhanced k-fold cross-validation. In: BRAZILIAN
CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018. Anais. . . [S.l.: s.n.], 2018.
p.194–199.

DOS SANTOS, P. G. et al. Quantum enhanced cross-validation for near-optimal neural networks
architecture selection. International Journal of Quantum Information, [S.l.], v.16, n.08,
p.1840005, 2018.

DUNJKO, V.; BRIEGEL, H. J. Machine learning & artificial intelligence in the quantum domain:
a review of recent progress. Reports on Progress in Physics, [S.l.], v.81, n.7, p.074001, 2018.

DUNJKO, V.; TAYLOR, J. M.; BRIEGEL, H. J. Advances in quantum reinforcement learning.
In: SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017 IEEE INTERNATIONAL
CONFERENCE ON. Anais. . . [S.l.: s.n.], 2017. p.282–287.

FEYNMAN, R. P. Simulating physics with computers. International journal of theoretical
physics, [S.l.], v.21, n.6-7, p.467–488, 1982.

FIGGATT, C. et al. Complete 3-qubit Grover search on a programmable quantum computer.
Nature communications, [S.l.], v.8, n.1, p.1918, 2017.

GEISSER, S. The predictive sample reuse method with applications. Journal of the American
statistical Association, [S.l.], v.70, n.350, p.320–328, 1975.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In: ACM
SYMPOSIUM ON THEORY OF COMPUTING. Proceedings. . . [S.l.: s.n.], 1996. p.212–219.

HARROW, A. W.; MONTANARO, A. Quantum computational supremacy. Nature, [S.l.], v.549,
n.7671, p.203, 2017.

LLOYD, S.; GARNERONE, S.; ZANARDI, P. Quantum algorithms for topological and
geometric analysis of data. Nature communications, [S.l.], v.7, p.10138, 2016.

LLOYD, S.; MOHSENI, M.; REBENTROST, P. Quantum algorithms for supervised and
unsupervised machine learning. arXiv preprint arXiv:1307.0411, [S.l.], 2013.

REFERÊNCIAS 16

MAKRIDAKIS, S. The forthcoming Artificial Intelligence (AI) revolution: its impact on society
and firms. Futures, [S.l.], v.90, p.46–60, 2017.

MAVADIA, S. et al. Prediction and real-time compensation of qubit decoherence via machine
learning. Nature communications, [S.l.], v.8, p.14106, 2017.

MENNEER, T.; NARAYANAN, A. Quantum-inspired neural networks. Tech. Rep. R329, [S.l.],
1995.

MÜLLER, B.; REINHARDT, J.; STRICKLAND, M. T. Neural networks: an introduction.
[S.l.]: Springer Science & Business Media, 2012.

NASRABADI, N. M. Pattern recognition and machine learning. Journal of electronic imaging,
[S.l.], v.16, n.4, p.049901, 2007.

NIELSEN, M. A.; CHUANG, I. Quantum computation and quantum information. [S.l.]:
AAPT, 2002.

PANELLA, M.; MARTINELLI, G. Neural networks with quantum architecture and quantum
learning. International Journal of Circuit Theory and Applications, [S.l.], v.39, n.1,
p.61–77, 2011.

PRESKILL, J. Quantum Computing in the NISQ era and beyond. arXiv preprint
arXiv:1801.00862, [S.l.], 2018.

PROVOST, F.; FAWCETT, T. Data science and its relationship to big data and data-driven
decision making. Big data, [S.l.], v.1, n.1, p.51–59, 2013.

RICKS, B.; VENTURA, D. Training a quantum neural network. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS. Anais. . . [S.l.: s.n.], 2004. p.1019–1026.

SCHULD, M.; SINAYSKIY, I.; PETRUCCIONE, F. Quantum computing for pattern
classification. In: PACIFIC RIM INTERNATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE. Anais. . . [S.l.: s.n.], 2014. p.208–220.

SHEN, D.; WU, G.; SUK, H.-I. Deep learning in medical image analysis. Annual review of
biomedical engineering, [S.l.], v.19, p.221–248, 2017.

SHOR, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, [S.l.], v.41, n.2, p.303–332, 1999.

SILVA, A. J. da; LUDERMIR, T. B.; OLIVEIRA, W. R. de. Quantum perceptron over a field
and neural network architecture selection in a quantum computer. Neural Networks, [S.l.], v.76,
p.55–64, 2016.

SILVA, A. J. da; OLIVEIRA, R. L. F. de. Neural Networks Architecture Evaluation in a
Quantum Computer. In: INTELLIGENT SYSTEMS (BRACIS), 2017 BRAZILIAN
CONFERENCE ON. Anais. . . [S.l.: s.n.], 2017. p.163–168.

SILVER, D. et al. Mastering the game of Go with deep neural networks and tree search. nature,
[S.l.], v.529, n.7587, p.484, 2016.

STONE, M. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society: Series B (Methodological), [S.l.], v.36, n.2, p.111–133, 1974.

REFERÊNCIAS 17

TRUGENBERGER, C. Probabilistic quantum memories. Physical Review Letters, [S.l.], v.87,
n.6, p.067901, 2001.

TRUGENBERGER, C. Quantum pattern recognition. Quantum Information Processing,
[S.l.], v.1, n.6, p.471–493, 2002.

TRUGENBERGER, C. Comment on"Probabilistic quantum memories-Reply. [S.l.]:
AMER PHYSICAL SOC ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA,
2003.

WIEBE, N.; BRAUN, D.; LLOYD, S. Quantum algorithm for data fitting. Physical review
letters, [S.l.], v.109, n.5, p.050505, 2012.

WITTEN, I. H. et al. Data Mining: practical machine learning tools and techniques. [S.l.]:
Morgan Kaufmann, 2016.

181818

2
First Contribution

Quantum enhanced k-fold cross-validation

Quantum enhanced k-fold cross-validation

Priscila G. M. dos Santos, Ismael C. S. Araujo, Rodrigo S. Sousa and Adenilton J. da Silva
Departamento de Computação

Universidade Federal Rural de Pernambuco
Recife, Pernambuco, Brazil

{priscila.marques, ismael.cesar, rodrigo.silvasouza, adenilton.silva}@ufrpe.br

Abstract—In this work, we propose a quantum-classical al-
gorithm able to perform a k-fold cross-validation with linear
speedup. The proposed method creates a quantum superposition
with patterns from a dataset and a classifier can evaluate all
patterns at once. We used a probabilistic quantum memory
in order to conduct the performance evaluation. The proposed
method was verified through a reduced experimental analysis
conducted classically.

Index Terms—Quantum computing, quantum cross-validation,
quantum machine learning

I. INTRODUCTION

The advantages of quantum computing with respect to time
speed-up over known classical algorithms are granted by the
possibility to perform an exponential number of computations
through quantum parallelism [1], [2]. There are also quantum
algorithms exponentially faster than any possible deterministic
classical algorithm [3]. By using quantum computation, one
can search in an unordered database quadratically faster [4]
or factorize integer numbers exponentially faster [5] than any
known classical algorithm.

Machine learning is among the fields that can benefit
from the advantages provided by quantum computing [6],
[7]. Several quantum machine learning algorithms have been
proposed in the literature. For instance, there are quantum
models of neural networks [8], [9], support vector machines
[10] and gradient descent [11].

A classifier is a function f : V → C that maps unlabeled
v ∈ V data to a label c ∈ C. A learning algorithm L builds a
classifier L(D) using a labeled dataset D [12]. The classifier
probability of correctly classifying a random instance is its
accuracy. Given a dataset, one needs to choose the best model
and algorithm to obtain a configuration with high accuracy. It
is necessary to perform empirical tests to achieve a machine
learning model suitable to the problem at hand.

One method used in machine learning model evaluation is
the k-fold cross-validation [12]. Cross-validation is a method
used in machine learning to estimate a classifier’s accuracy. In
this work, we explore the idea of using quantum parallelism
to create a quantum enhanced cross-validation with a linear
speed-up advantage over classical cross-validation.

This work was supported by CNPq, FACEPE and Serrapilheira Institute
(grant number Serra-1709-22626) (Brazilian research agencies).

Given a data set D. A k-fold cross-validation splits the data
set into k disjoint sets D1, D2, . . . , Dk with n samples each. A
learning algorithm L is used to build k classifiers Yi, where the
i-th classifier is trained using the subset D−Di and tested with
Di. An estimative of the classifier L(D) accuracy is calculated
using equation (1).

Accuracy(L(D)) =
1

nk

k∑

i=0

∑

dj∈Di
δ(Yi(dj), cj) (1)

Where δ(a, b) = 1 if a = b and 0 otherwise. Yi(dj) is the
label returned by the classifier Yi with the instance dj as input.
And cj is the label of the instance dj of the test set Di.

The computational cost to perform a k-fold cross validation
is O(k ·m), in which the evaluated classifier has cost O(m).
In most cases, m is a function of the number of patterns in
the dataset. The cost to perform cross-validation can be a
limitation when the classification procedure has a high cost
or when the classifier is working with a large amount of data.

In this paper, we propose a quantum enhanced k-fold cross-
validation, in which the classifier needs to be trained only
once instead of O(k). The proposed method is based on the
idea that any classical classifier can be lifted to the quantum
domain. Any function implemented in a digital computer
is a binary function. For instance, neural networks, support
vector machines, nearest neighbor classifiers are functions
implementable in classical computers, and thus binary.

All efficient computable binary functions can be efficiently
simulated in a quantum computer [1]. Classical learning algo-
rithms are also binary functions and theoretically can also be
lifted to quantum domain. For instance, the back propagation
learning algorithm receives an input, desired output, actual
weights and then produces the weights of the next iteration.
Therefore, classifiers can be trained with all folds in super-
position and then we use a quantum associative memory to
estimate the classifier accuracy.

The remainder of this work is divided into six sections.
Section II introduces some quantum computing concepts.
Section III presents the quantum associative memory used.
Section IV is the main contribution of this work, containing
the quantum enhanced cross-validation method proposed. The
experiments are presented in section V. Section VI contains

19

some discussions concerning the quantum enhanced cross-
validation and quantum machine learning. Finally, section VII
is the conclusion.

II. QUANTUM COMPUTING

The basic unit of information in quantum computing is the
quantum bit (qubit). Unlike a classical bit, which can only
assume one value at a given time, a quantum bit can be
described in a superposition of states. A qubit is presented in
equation (2), where α and β are the probabilistic amplitudes
associated with the states.

|ψ〉 = α|0〉+ β|1〉 (2)

The probabilistic amplitudes are represented by complex
numbers, obeying the normalization rule described in equation
(3). Thus, the modulus squared of each amplitude represents
a probability, and the probabilistic amplitudes describe the
qubit’s behavior.

|α|2 + |β|2 = 1 (3)

The quantum systems are on a Hilbert space in which
complex vectors are used to represent the states. A system
with several qubits is composed through the tensor product,
represented by the symbol ⊗. For instance, the tensor product
of |ψ0〉 = α0|0〉 + β0|1〉 and |ψ1〉 = α1|0〉 + β1|1〉 results
in |ψ0ψ1〉 = α0α1|00〉 + α0β1|01〉 + β0α1|10〉 + β0β1|11〉.
Some quantum states representing multiple qubits cannot be
decomposed into tensor products of smaller systems, these
states are known as entangled states.

The operations under a quantum system are described by
2n × 2n sized unitary matrices, where n is the number of
qubits the gate acts on. A matrix U is unitary if its inverse is
its conjugate transpose, as presented in equation (4), where
I represents the identity matrix and U† is the conjugate
transpose of U .

U†U = UU† = I (4)

An important quantum operator is the Hadamard operator,
as it is usually used to generate a quantum state that contains
a superposition of the basic states with the same amplitude.
The matrix that represents the Hadamard operator can be seen
in equation (5), where H|0〉 = 1√

2
(|0〉 + |1〉) and H|1〉 =

1√
2
(|0〉 − |1〉).

H =
1√
2

[
1 1
1 −1

]
(5)

Other quantum operators such as X and the CNOT are
used to switch the state of a qubit. The operator X is equivalent
to the classical NOT gate, switching the state of the qubit.
And CNOT is a gate that acts in two qubits, the first qubit
being the control qubit and the second being the target. The
CNOT is a controlled version of the X gate, conditionally
switching the state of the target qubit if the control qubit is set

to 1. The matrix representation of the gates X and CNOT
can be seen in equation (6).

X =

[
0 1
1 0

]

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




(6)

It is necessary to perform a measurement to extract any
information from a quantum state. The measurement is not
unitary. After the measurement, the quantum states collapse
to one of its values in superposition. For instance, given the
quantum state described in equation (7), the probability of
finding |i〉 after the measurement is pi = |αi|2 and the state
would collapse to |i〉.

|ψ〉 =
∑

i

αi|i〉 (7)

III. PROBABILISTIC QUANTUM MEMORY

A content-addressable memory is a memory in which con-
tent can be retrieved even with noisy input or when only a
partial knowledge of the input is known. These memories are
also called associative memories and its classical models have
a storage capacity shortage.

A probabilistic quantum memory (PQM) is the quantum
analog of an associative memory. It is able to overcome
the storage limitation of its classical counterpart with an
exponential storage capacity with respect to the number of
qubits [13], [14].

Let T be a set of N patterns with n bits used as input to
the system {p1, ..., pN}. The probabilistic quantum memory
requires three quantum registers to perform the pattern’s
storage. The first is the input register |i〉 and the second is
the memory register |m〉, both registers have the size equal to
the size of the patterns in the set T . The third register is a
two-qubit register |u1, u2〉 prepared in the state |01〉, which is
used as an auxiliary register in the storage algorithm [13].

For each pattern of the input set T the state of the system is
prepared and each pattern is stored on the memory. The storage
algorithm for the PQM works by storing the patterns of qubits
in superposition as in equation (8). The storage algorithm
works as in Fig. 1.

|M〉 = 1√
N

N∑

j=1

∣∣pj
〉

(8)

The content stored on the memory is retrieved proba-
bilistically by the Hamming distance between the input and
the superposed states on the memory register. The retrieval
algorithm also requires quantum registers for input, memory
and control.

20

|p1〉 • • • •

|p2〉 • • • •

|u1〉 •

|u2〉 • • CSj • •

|m1〉 X • • X

|m2〉 X • • X

Fig. 1. A quantum circuit for storing patterns of two qubits

The control register is a b-qubit register prepared in the state
|0〉b. First, a Hadamard gate is applied to the first qubit of the
control register, leaving the state as in equation (9)

|ψ0〉 =
1√
2N

n∑

j=1

∣∣i; pj ; 1102 · · · 0b
〉
+

n∑

j=1

∣∣i; pj ; 0102 · · · 0b
〉 (9)

Where |ψ0〉 is the resulting state of the first step of the
retrieval algorithm. In the second step, the state of the memory
is processed by applying a CNOT gate to each qubit of the
input register as control and each qubit of the memory as
target, then a X gate is applied to each qubit of the memory.

|ψ1〉 =
N∏

j=1

Xmj
CNOTij ,mj

|ψ0〉 (10)

Where Xmj
is the NOT gate being applied to the j-th qubit

of the memory register and CNOTij ,mj is the CNOT gate
being applied to the system using the j-th qubit of the input as
control qubit and j-th qubit of the memory register as target.
If there is a pattern stored in the memory that is equal to the
input, all the memory qubits will be set to 1.

In the next step the operators U and CU−2 are applied to
each qubit of the memory, in order to compute the Hamming
distance between memory and input. The operators CU−2 and
U are applied to the state as in equation (11).

|ψ2〉 =
N∏

j=1

CU−2ij ,mj

N∏

j=1

Umj
|ψ1〉 (11)

Where CU−2 is a controlled version of the U−2 operator.

U =

[
e(i

π
2N) 0
0 1

]

Then, the inverse transformation is applied to the state in
equation (10) in order to restore the memory register to its

original state so the process can start again. The state of the
system is to be prepared for each qubit of the control register
|c〉b.

After the state preparation, the control register is measured.
If the input pattern is very distant from the patterns stored in
the memory, we would obtain a large number of 1s as result.
Otherwise, a large number of 0s would be obtained.

Therefore, the quantum cross-validation algorithm is de-
signed to consider the quantity of 0s in the control register.
The probability of the quantum register |c〉 equals to B is given
by equation (12).

P (c = B) = 1

N

N∑

j=1

(
d

B

)
cos2(d−B)

(π

2N
dh
(
i, pj

))
·

sin2B
(π

2N
dh
(
i, pj

))
(12)

IV. QUANTUM ENHANCED CROSS-VALIDATION

Given a classifier L, a data set with n patterns stored in
superposition can be used to perform a quantum enhanced
cross-validation.

Extra quantum registers, |fold〉 and |testFold〉, are required
to represent the folds used during training and validation. The
learning algorithm L is performed only when the |fold〉 and
|testFold〉 states are different.

The performance of the classifier L is stored on register
|performance〉 by applying a X gate to the i-th qubit of the
register only if L correctly classifies the i-th pattern of the
k-th fold. Thus, if the classifier L has a good performance,
the register |performance〉 will have many qubits set to 1.

∑

testFold∈{1,...,k}
|testFold〉|L〉|performanceL,testFold〉

(13)
With our method the classifier can be trained and evaluated

over the entire dataset only once with cost O(C) instead of
O(k · C), where k is the number of folds and C is the cost of
training the classifier L.

At the end of the cross-validation process, the registers
|performanceL,testFold〉 will store the calculated perfor-
mances of the evaluated classifier L. This performance register
can be used as the memory register for the PQM. In order
to access the resulting performance of L an input state
representing 100% performance, |1〉n, is used as input to the
PQM retrieval algorithm applied to |performanceL,testFold〉.

The algorithm is a classical-quantum procedure, which
means that some steps can be executed classically whereas
others have to be run in a quantum processor. In this work,
it is assumed the existence of a quantum processor in a host
classical computer.

Algorithm 1 describes the steps for the quantum enhanced
cross-validation. Lines 1 to 3 classically divide the dataset into
k folds. Each fold is stored in superposition using the PQM
storage algorithm.

21

The training and initialization take place in steps 5 to 7. The
classifier L is trained in superposition with the folds |fold〉
that are different from |testFold〉. In step 7 the classifier
has already been trained. Therefore, the |testFold〉 is used
to perform the validation. The register |performance〉 is
initialized in state |0〉n. The resulting state after the training
and the initialization steps is as in equation (14)

∑

testFold∈{1,...,k}
|testFold〉|L〉|0〉n (14)

The for loop in steps 8 to 13 performs the validation
of the classifier L with the data in superposition according
with the folds |testFold〉. In line 9, U is a unitary operator
used to calculate the output of classifier L according to the
pattern pj . The performance of the classifier is stored on the
register |performance〉. The resulting state after step 13 is
as described in equation (13).

In step 15 the PQM retrieval algorithm is applied to the
performance register. At the end, the number of 1s is retrieved
and stored in nL.

Algorithm 1: Quantum Enhanced Cross-Validation
(QECV)

1 Divide the dataset into k folds
2 for each fold do
3 Store fold in a superposition
4 end
5 Add the parameters of classifier L into the superposition
6 Train the classifier in superposition with the folds

different from |testFold〉
7 Initialize the performance register with state |0〉n
8 for each pattern pj and desired output tj in |testFold〉

do
9 Apply U |pj〉 to calculate the output |o〉

10 if |o〉 = |tj〉 then
11 Set |performance〉j to 1
12 end
13 Apply U−1|pj〉
14 end
15 Apply the retrieval algorithm from the PQM with input
|1〉n, memory as |performance〉 and b qubits in the
control register |c〉

16 Measure |c〉 and store the number of 1s in nL
17 Return nL

V. EXPERIMENTS

Current quantum computers still do not have a suffient
number of qubits to perform big scale experiments. Quantum
computers with a sufficient number of qubits to perform an
experiment able to evaluate the proposed method are still
to be developed. Therefore, in order to verify our algorithm
we designed an experiment using classical classifiers and a
classical description of the PQM retrieval algorithm.

All quantum operations can be put into classical domain.
However, due to how costly computationally-wise it is to
simulate quantum algorithms on classical computers, we had
to perform a reduction on the scope of the algorithm.

We do not perform a simulation of quantum computers. The
experiments were conducted in a classical computer by apply-
ing the description of the QECV algorithm to evaluate neural
network architectures. The architectures were represented by
the number of neurons in the hidden layer. As stated before, it
was necessary to limit the number of architectures considering
they were to be trained classically.

The datasets used were from the PROBEN1 repository [15],
which consists in a collection of real world problems for neural
network learning. Details of these datasets can be seen in table
I. The datasets were divided into train and test sets: the train
set contains 10% of the samples while the test set contains the
remaining 90%.

TABLE I
DATASETS

Dataset Features Classes Examples
Cancer 9 2 699
Gene 120 3 3175

We followed the steps of the proposed algorithm to achieve
a classical version of the proposed method. In the first step
of the experiment, 1000 neural network instances were trained
using scikit-learn [16] version 0.19.1. Then, we performed a
10-fold cross-validation for each architecture, storing all the
architectures’ performances and output vectors.

The performance vectors obtained after the training process
contain the information regarding the classification of each
sample of the validation set for all the neural networks. We
then stored these vectors on the PQM memory register.

The next step was to measure the control registers. We
simulated the retrieval algorithm from the PQM by using
equation (12). In this experiment the number of control qubits
on the PQM was set to 100.

Finally, for every neural network architecture we calculated
the expected value E(X) of the number of 1s on the out-
put from the PQM retrieval algorithm. The results of this
experiment can be seen in Table II, in which the expected
value E(X) grows inversely proportional to an increase in
the performance. Therefore, it suggests a correlation between
the architectures performances and the PQM output.

VI. DISCUSSIONS

The QECV procedure can be used to find optimal param-
eters, which lead to global minima in the error space, for
learning algorithms. As it is shown in Section V. This might
not be the case for specific classifiers which have parameters
updated during the training, such as naive Bayes. However,
since the classical cross-validation is used not only for model
selection but also for accuracy estimation [12], [17], we can

22

TABLE II
DATASET RESULTS

Neurons Performance E(X)
1 0.5269 46.3695
2 0.7148 25.9858
3 0.8423 12.7966
4 0.8930 7.8277
5 0.9336 3.9903
6 0.9566 1.8340
7 0.9647 1.1213
8 0.9730 0.4200
9 0.9733 0.4945
10 0.9753 0.3059
11 0.9763 0.1581
12 0.9764 0.1571
13 0.9766 0.1543
14 0.9773 0.1461
15 0.9765 0.1543
16 0.9769 0.1510
17 0.9770 0.1488
18 0.9774 0.1426
19 0.9775 0.1423
20 0.9772 0.1449

(a) Cancer dataset

Neurons Performance E(X)
1 0.5778 38.3819
2 0.7862 13.2412
3 0.8619 5.1163
4 0.8781 3.7319
5 0.8809 3.5152
6 0.8829 3.3877
7 0.8827 3.3940
8 0.8814 3.4649
9 0.8808 3.4963
10 0.8796 3.5675
11 0.8790 3.6003
12 0.8787 3.6177
13 0.8777 3.6754
14 0.8777 3.6798
15 0.8781 3.6539
16 0.8768 3.7269
17 0.8775 3.6924
18 0.8772 3.7104
19 0.8772 3.7047
20 0.8769 3.7227

(b) Gene dataset

safely assume that QECV can be used to perform the same
tasks as well.

The method proposed in this work can perform a k-fold
cross-validation with a linear quantum speedup. Classically,
the classifier needs to be evaluated to all the folds. In the
proposed method, it is only necessary to evaluate the classifier
once for all the folds since we have access to all the data
through quantum superposition. One can train and evaluate
the classifiers with all the folds simultaneously.

We proposed an algorithm with a linear reduction in the
number of steps required to perform a k-fold evaluation. The
idea is to provide to the classifier all the folds and parameters
in a quantum superposition, to train and test it for all the inputs
and parameters with just one execution. In this way, we tested
the classifier with different parameters in superposition and
evaluated multiple configurations at the same time, unlike one
configuration at a time as it is done classically.

Quantum computing can contribute to machine learning
algorithms as it provides a way to process all information
simultaneously. By making use of entanglement and quan-
tum superposition it is possible to deal with large amounts
of data. Quantum computation can provide time complexity
advantages as we may prepare the data to be processed in
superposition and evaluate it all at once.

Not only time complexity advantages can be obtained over
classical computing. For instance, the quantum associative
memory used in this work has exponential storage capacity
in the number of qubits. There are several machine learning
models and methods that may somehow benefit from quan-
tum computation. Moreover, the quantum approaches towards
information data representation can also vary. Thus, there are
still many points to explore in this field of study.

VII. CONCLUSION

The QECV allows evaluating classifiers with a linear
speedup in computational cost. This result may allow a faster
analysis of machine learning algorithms for big data classifi-
cation and also a faster evaluation of deep learning models.

To actually run the QECV algorithm a quantum processor
with thousands of qubits would be required. However, as it is
shown in Section V, it is possible to perform experiments in
a classical computer, using a limited number of folds without
loss of generality to show the viability of QECV.

Representing data in a quantum state is one of the key
challenges in quantum machine learning [6]. The approach
presented in this work assumes the data are represented by
qubits in the computational basis state.

In a future work, we might explore the possibility of using
QECV and the representation of data in the amplitudes of
the qubits as presented in [18], using the states as indices.
Another future work might consider expanding the power of
QECV, allowing us to perform a k-fold or a complete k-fold
cross-validation. Finally, with small-scale quantum computers
becoming a reality, another possible work can explore how
to implement this method in such computers using simple
classifiers.

REFERENCES

[1] M Nielsen and I Chuang. Quantum computation and Quantum infor-
mation. Cambridge University Press India, 2000.

[2] NS Yanofsky and MA Mannucci. Quantum computing for computer
scientists, volume 20. Cambridge University Press Cambridge, 2008.

[3] D Deutsch and R Jozsa. Rapid solution of problems by quantum
computation. Proc. R. Soc. Lond. A, 439(1907):553–558, 1992.

[4] LK Grover. Quantum mechanics helps in searching for a needle in a
haystack. Physical review letters, 79(2):325, 1997.

[5] PW Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–
332, 1999.

[6] M Schuld, I Sinayskiy, and F Petruccione. An introduction to quantum
machine learning. Contemporary Physics, 56(2):172–185, 2015.

[7] J Biamonte, P Wittek, N Pancotti, P Rebentrost, N Wiebe, and S Lloyd.
Quantum machine learning. Nature, 549(7671):195, 2017.

[8] AJ da Silva and RLF de Oliveira. Neural networks architecture
evaluation in a quantum computer. In Intelligent Systems (BRACIS),
2017 Brazilian Conference on, pages 163–168. IEEE, 2017.

[9] AJ da Silva, TB Ludermir, and WR de Oliveira. Quantum perceptron
over a field and neural network architecture selection in a quantum
computer. Neural Networks, 76:55–64, 2016.

[10] P Rebentrost, M Mohseni, and S Lloyd. Quantum support vector ma-
chine for big data classification. Physical review letters, 113(13):130503,
2014.

[11] P Rebentrost, M Schuld, L Wossnig, F Petruccione, and S Lloyd. Quan-
tum gradient descent and newton’s method for constrained polynomial
optimization. arXiv preprint arXiv:1612.01789, 2016.

[12] R Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In International Joint Conference on
Artificial Intelligence, volume 14, pages 1137–1145, 1995.

[13] CA Trugenberger. Probabilistic quantum memories. Physical Review
Letters, 87(6):067901, 2001.

[14] CA Trugenberger. Quantum pattern recognition. Quantum Information
Processing, 1(6):471–493, 2002.

[15] Lutz Prechelt. Proben1: A set of neural network benchmark problems
and benchmarking rules, 1994.

[16] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel,
M Blondel, P Prettenhofer, R Weiss, V Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research,
12(Oct):2825–2830, 2011.

23

[17] S Arlot and A Celisse. A survey of cross-validation procedures for
model selection. Statistics surveys, 4:40–79, 2010.

[18] M Schuld, M Fingerhuth, and F Petruccione. Implementing a distance-
based classifier with a quantum interference circuit. EPL (Europhysics
Letters), 119(6):60002, 2017.

24

252525

3
Second Contribution

Quantum enhanced cross-validation for
near-optimal neural networks architecture

selection

ar
X

iv
:1

80
8.

09
05

8v
1

 [
qu

an
t-

ph
]

 2
7

A
ug

 2
01

8

QUANTUM ENHANCED CROSS-VALIDATION FOR

NEAR-OPTIMAL NEURAL NETWORKS ARCHITECTURE

SELECTION

PRISCILA G. M. DOS SANTOS, RODRIGO S. SOUSA, ISMAEL C. S. ARAUJO AND
ADENILTON J. DA SILVA

Abstract. This paper proposes a quantum-classical algorithm to evaluate
and select classical artificial neural networks architectures. The proposed al-
gorithm is based on a probabilistic quantum memory and the possibility to
train artificial neural networks in superposition. We obtain an exponential
quantum speedup in the evaluation of neural networks. We also verify experi-
mentally through a reduced experimental analysis that the proposed algorithm
can be used to select near-optimal neural networks.

1. Introduction

Artificial neural networks (ANN) are computational models inspired by the hu-
man brain and with learning capacities. The first artificial neuron was proposed in
the 1940s,1 a learning rule is proposed by Hebb2 and the backpropagation algorithm
based on gradient descent was proposed in 1980s.3 ANNs have several applications
in industry and research. For instance, in pattern recognition,4 clustering,5 image6

and speech processing7 and other applications.
An artificial neuron with m real inputs x1, . . . , xm has m weights w1, . . . , wm,

a bias b and its output is described in Eq. (1), where f is a nonlinear activation
function.

(1) f

(
m∑

k=1

wk · xk + b

)

A Feedforward Neural Network (FNN) is composed of layers of neurons and
each layer receives its input signal from the previous layer. FNN optimization has
received much attention in the last 20 years.8 Metaheuristics as meta-learning,9

differential evolution,10 genetic algorithms,11 evolutionary programming, simulated
annealing, tabu search,12 particle swarm optimization,13 etc.8 have been used to
optimize neural networks architecture.

The number of neurons in the hidden layers and the number of hidden layers
are some of the most important elements of a feedforward ANN because there is
a relation between them and the ANN performance.14 The optimization of neu-
ral networks weights with backpropagation or other techniques based on gradient
descend leads to local minima in the error space. To evaluate a neural network

Departamento de Computação, Universidade Federal Rural de Pernambuco, Rua Dom
Manoel de Medeiros, s/n. Campus Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil

E-mail address: {priscila.marques, rodrigo.silvasouza, ismael.cesar, adenilton.silva}@ufrpe.br.
1

26

2

architecture, it is necessary to perform an empirical evaluation that involves a te-
dious trial and error process with several random weights initializations. This trial
and error process can involve a procedure to estimate the accuracy of candidate
classifiers. The κ-fold cross-validation15 is an accuracy estimation method used,
for instance, to perform model evaluation and model selection. A dataset T is split
in κ disjoint folds or subsets T1, . . . , Tκ and a classifier is trained κ times in which
each iteration t ∈ [1, κ] the model is trained with dataset T − Tt and tested with
fold Tt.

To determine if a neural network architecture can learn a given task is an NP-
complete problem named the loading problem.16 If P 6= NP then developing a
function that maps neural networks architectures to their best performance over
a given data set is an intractable problem. The objective of this work is to in-
vestigate the possibility to use quantum computation for selecting a near-optimal
classical neural network architecture for a given learning task. In previous works
on neural network architecture evaluation17 or architecture selection on a quantum
computer,18 a nonlinear quantum operator was used to propose a polynomial al-
gorithm that solves the loading problem. As it is not known whether nonlinear
quantum operators are physically realizable or not, in this paper we take the safer
road by obeying the principles of quantum mechanics by using unitary quantum
operators. We have already followed this track by performing an evaluation of neu-
ral networks performances using unitary quantum operators,19 here we address the
problem of unitarily performing an architecture selection of neural networks.

Several quantum machine learning models20 and quantum neural networks21

have been proposed, but the non-existence1 of quantum computers does not allow
an empirical comparison between classical and quantum neural networks models.
We cannot evaluate numerically the quantum proposed models to verify if they
present advantages when compared with classical models. This technical limita-
tion is named the benchmark problem.20 The algorithm proposed in this work is
a quantum algorithm and requires a universal quantum computer. It is also de-
signed to allow a (reduced) simulation in a classical computer and we show that the
proposed method can choose a near optimal neural network architecture without
the necessity of random weights initializations and with a single training of each
neural network architecture. This result has two main implications: i) we can use
a quantum enhanced cross-validation to perform neural network parameter evalua-
tion/selection with an exponential quantum speedup and ii) the proposed method
can be evaluated numerically and presents advantages over classical strategies using
real benchmark problems.

The remainder of this work is organized into 5 sections. Section 2 presents the
probabilistic quantum memory used in this work. Section 3 is the main section and
presents a quantum algorithm that evaluates classical neural networks architectures
and is used to perform neural networks architecture selection. Section 4 presents
experiments, that have been performed in a classical computer (and can be executed
exponentially faster in a quantum computer). Section 5 presents a discussion of the
results. Section 6 presents the conclusion.

1Actual quantum computers do not have enough quantum bits, “remain coherent for a limited
time22” or are designed for specific tasks. The quantum computer necessary to perform the tasks
described in this work should be universal and have thousands of qubits

27

3

2. Probabilistic quantum memories

A content-addressable memory is called associative memory because of the pos-
sibility to retrieve information from it even with partial knowledge of the desired
content. Models of associative memories, like the Hopfield network, suffer from a
capacity shortage.23 The quantum counterpart of an associative memory has the
advantage of having an exponential capacity because the patterns stored in the
memory are kept in superposition. Given a dataset of n patterns with k qubits
T = {p1, p2, ..., pn}, the quantum memory creates the state described in Eq. (2),
where |M〉 is the quantum register that will store the patterns.

(2) |M〉 = 1√
n

n∑

j=1

∣∣pj
〉

In this work, we use the Probabilistic Quantum Memory24 (PQM). The storage
algorithm of the PQM creates a superposition of binary patterns as described in
Eq. (2). The retrieval algorithm of the PQM is probabilistic and depends on the
Hamming distance between the input pattern and stored patterns.

It is necessary to reload the memory after each execution of the recovering al-
gorithm of the probabilistic quantum memory. This problem is pointed out as a
fundamental limitation of the PQM25 and decreases the speedup for tasks as ma-
chine learning.26 In this work, we propose an application of the PQM that requires
a single execution of the PQM recovering algorithm for a given input and this
limitation does not affect the method proposed in this paper.

One second limitation of the PQM is its inability to deal with continuous in-
puts. In the actual small-scale quantum computers this is a strong limitation, but
if quantum computers with thousands or millions of qubits are built the binary rep-
resentation can be used to represent continuous inputs with some precision. In this
work, we assume the existence of such quantum computers and continuous inputs
can be approximately represented by using binary numbers.

2.1. The storage algorithm. The states during the PQM storage algorithm are
divided into three quantum registers |p1p2...pk;u1u2;m1m2...mk〉. Where |pj〉 is
the j-th qubit of the input register, u1u2 are control qubits prepared in a state
|01〉 and |m〉 = |m1, . . . ,mk〉 is the memory register, where the patterns are to be
stored. To build a coherent superposition of the patterns to be stored it is necessary
to make use of Toffoli, X and CSj gates. The CSj gate is described in Eq. 3.

(3) CSj =




1 0 0 0
0 1 0 0

0 0
√

j−1
j

1√
j

0 0 −1√
j

√
j−1
j




A circuit representing a 2 qubit probabilistic quantum memory storing procedure
is described in Fig. 1. In the first iteration the quantum registers |p, u,m〉 are
initialized as described in the Eq. 4 and run the circuit described in Fig. 1. For
each other pattern pj in the dataset, we initialize the quantum register input with
pj and execute the circuit described in Fig. 1 again.

28

4

|p1〉 • • • •

|p2〉 • • • •

|u1〉 •

|u2〉 • • CSj • •

|m1〉 X • • X

|m2〉 X • • X

Figure 1. A quantum circuit for storing patterns of two qubits

(4) |ψ0〉 =
∣∣p11p12...p1k, 01, 00...0

〉
.

In order to store the n patterns of the set P , it is necessary to perform n itera-
tions. In the application of the CSj gate, the parameter j is j = p+1− iter where
p is the number of patterns and iter is the iteration number.

2.2. The retrieval algorithm. The retrieval algorithm also requires three regis-
ters23, 24 |i1...ik;m1...mk; c1...cd〉. Where |ij〉 is the j-th qubit of the input register,
|mj〉 is the j-th qubit of the memory register and cj is the j-th qubit of the control
register,24 The control qubits start at the state |0...0〉. The retrieval of the patterns
is made probabilisticaly.23 For each cl in |c〉, the following steps are performed.
Step 1 apply the Hadamard gate to |cl〉 giving us, at the first iteration, the state
described in Eq.(5).

(5) |ψ0〉 =
1√
2n

n∑

j=1

∣∣∣i1...ik; pj1...pjk; 0102...0b
〉
+

1√
2n

n∑

j=1

∣∣∣i1...ik; pj1...pjk; 1102...0d
〉

In the second step, for each bit ij in the input pattern, we apply the CNOT gate
with the j-th qubit of the input as the control and the j-th qubit of the memory
as the target and apply the NOT gate to the j-th bit of the memory to obtain the
state

|ψ1〉 =
n∏

j=1

CNOT (ij,mj)X(mj) |ψ0〉 .

After the second step, if there is a pattern stored in the superposition equal to the
input all its qubits will be set to |1〉.23

Step 3 applies the quantum operator described in Eq. 6.

(6) |ψ2〉 =
k∏

j=1

(CV −2)(cl,mj)

k∏

j=1

U(mj) |ψ1〉

29

5

Where the operator V is a unitary matrix and CV −2 is a controlled version of the
V −2 operator.

V =

[
e(i

π
2n) 0
0 1

]

The inverse of steps 1 and 2 are applied to the quantum state |ψ2〉 to restore the
memory quantum register to its original state. This is the last deterministic step
of the retrieval algorithm and the resulting state is described in Eq. (7).

(7) |ψ〉 = 1√
n

n∑

j=1

d∑

l=0

cosd−l
(π
2k
dh
(
i, pj

))
· senl

(π
2k
dh
(
i, pj

))∑

{Jl}

∣∣i; pk; J l
〉

Where
{
J l
}
is the set of all binary strings with exactly l bits set to 1 and (d− l)

bits set to 0.24 After processing the state, it is necessary to perform a measurement
to the control qubits.

The result of the measurement is a large number of control qubits in the state |0〉
if all stored patterns are similar to the input, and a large number of control qubits
in the state |1〉 if all stored patterns are very distant of the input. In this work, we
consider that the number of 1s obtained after the measurement of quantum register
|c〉 is the output y of the PQM. From Eq. 7 we can easily verify that the probability
to obtain y = K is given by

(8) P (y = K) =
1

p

p∑

j=1

(
d

K

)
cos2(d−K)

(π
2k
dh
(
i, pj

))
· sin2K

(π
2k
dh
(
i, pj

))

3. Selection of neural networks architecture in a quantum
computer

An artificial neural network for classification is defined as a function N : Rm →
{c1, . . . , ck}. Despite being a real function the implementation of a neural network
in a classical digital computer is a binary function. All binary functions can be
simulated in a quantum computer, then theoretically a classical neural network
can be represented by a quantum circuit where the weights, inputs and outputs
are strings of qubits. One backpropagation iteration is also a real function that
receives inputs x(t) and weights w(t), and outputs weights w(t + 1). In a digital
computer one backpropagation iteration is also a binary function and theoretically
can be represented with a quantum operator.

Figure 2 represents the idea of training neural networks in superposition. The
first quantum register receives patterns from the training set. The load function
loads a pattern in the quantum register. This loading function can be accomplished
because the state of input quantum register is always a basis state. The BP operator
represents a backpropagation step. The first BP operator receives input |xt〉 and
weights |wt〉 and produces |wt+1〉. The second BP operator receives |xt+1〉 and
|wt+1〉 to produce |wt+2〉. The quantum operator BP † inverts the action of the
first BP operator and prepares the third quantum register to receive the next
weight vector. If |wt〉 is a superposition of weights, a sequence of load, BP and
BP † operators will train all the networks in the superposition simultaneously. We
can obtain all the neural networks with a given architecture in superposition just
by applying the Hadamard operator in all qubits in the quantum register |w〉.

30

6

|0〉 load(xt)

BP

load(xt+1)

BP

load(xt)

BP †

|xt〉

|wt〉 |wt〉

|0〉 |0〉

|0〉 |wt+2〉

Figure 2. Theoretical quantum circuit implementing two back-
propagation iterations

The idea to present an input pattern to neural networks in superposition is
presented by Meener,27 he named this strategy Strongly Inspired Neural Network.
Instead of developing the strongly inspired neural network the authors developed a
weakly inspired neural network, where for each pattern in a dataset a neural network
is trained and later all neural networks are stored in superposition. We develop the
strategy of strong inspired neural networks and we use the name superposition based
learning28 to avoid confusion with works that deal with classical neural networks
only based on ideas from quantum computing.

In addition to creating a superposition of neural networks, we also manage the
dataset to perform a κ-fold cross-validation with the neural networks in superposi-
tion. To perform the cross-validation using quantum superposition, we use two ad-
ditional quantum registers |fold〉 representing the fold used as test and |input fold〉
which contains information about the fold of the actual input sample. The learning
algorithm iteration is applied only when |fold〉 and |input fold〉 are different. If
the |fold〉 quantum register receives a superposition representing all possible folds,
the cross-validation can be performed in superposition with the cost of only one
learning algorithm execution.

The effect to train all neural networks in superposition is to obtain a superpo-
sition of weight vectors at local minima of the error surface. Classically one could
just choose the neural network with the best accuracy over a validation dataset.
But this information cannot be accessed directly from the state in quantum su-
perposition. To obtain a useful measure of the architecture performance for the
dataset we use a quantum procedure to calculate the distance between the neural
networks accuracy and 100% of accuracy in the validation set.

We calculate the performance of the neural networks in superposition by pre-
senting patterns in fold l (l = 1, . . . , κ) to the neural networks in superposition and
applying an X gate in the ith qubit of the performance quantum register if the
network correctly classifies the ith pattern and testFold is equal to l. After this
procedure the performance and weights quantum registers will be entangled and
their state is described in Eq. (9).

(9)
∑

w,testFold

|testFold〉 |w〉 |performancew,testFold〉

It is necessary to present the dataset only once to calculate the performance of all
neural networks in all folds.

31

7

The quantum register performance is in state
∑

w,testFold

|performancew,testFold〉 ,

we use this state as the memory of a probabilistic quantum memory with input
|1〉n with k control qubits. The auxiliary quantum register |c〉 is measured and the
output is the number of 1s obtained. The algorithm is repeated one time for each
architecture to be evaluated.

Algorithm 1 presents the quantum algorithm to select neural networks archi-
tectures. We suppose that the quantum device is controlled by a host classical
computer. Heterogeneous computer architectures with different processors special-
ized for different tasks are increasingly common. The first quantum computers
with such architecture are in development. Algorithm 1 uses this hybrid architec-
ture to perform a heuristic search over classical neural networks architectures using
a quantum device.

Step 1 of Algorithm 1 creates the folds of the cross-validation and is performed
in the classical computer. Each fold created in the cross-validation procedure has
the same size and if necessary some patterns are removed from the dataset.

The for loop starting in step 2 performs an enhanced cross-validation of all
neural networks with a given architecture. Steps 3 to 5 are initialization steps and
are executed in the theoretical quantum device. Step 3 initializes neural network
weights in a superposition of all possible weights. Step 4 initializes the fold quantum
register with the quantum state

∑κ
l=1

1√
κ
|l〉. Step 5 initializes the quantum register

performance with the quantum state |0〉n. After step 5, the state of quantum
registers testFold, weights and performance will be described by Eq. (10), where
W is the set of all possible weights with a given precision.

(10) |testFold〉 |weights〉 |performance〉 =
∑

w∈W,
testFold∈{1,··· ,κ}

|testFold〉 |w〉 |0〉n

Step 6 trains the neural networks in superposition. The training procedure is
a quantum-classical algorithm described in Fig. 2. At each iteration, the classical
device selects a pattern from the dataset and loads the pattern in the input quantum
register (that is always in a basis state) and the fold of the pattern in the inputFold
quantum register. Then the learning iteration is performed in the parcels in the
superposition where the testFold and inputFold are different. After this step the
weights quantum register is in a superposition of trained neural networks and the
testFold, weights and performance quantum register will be in the state described
in Eq. (11) where W̃testFold is the set of neural networks weights trained with data
T − TtestFold.

(11)
∑

wtestFold∈W̃testFold,
testFold∈{1,··· ,κ}

|testFold〉 |wtestFold〉 |0〉

The for loop starting in step 7 calculates the performance of each neural network
in superposition in the validation set. Each test fold of the cross-validation is
presented and the neural networks accuracy correspondent to this fold is evaluated.
The evaluation is performed in superposition and the test set needs to be presented

32

8

only once. After this for loop, the state of quantum registers testFold, weights and
performance are described in Eq. (12).

(12)
∑

wtestFold∈W̃testFold,
testFold∈{1,··· ,κ}

|testFold〉 |wtestFold〉 |performancewtestFold
〉

Step 15 runs the recovering algorithm of the probabilistic quantum memory with
input |1〉n representing a performance of 100% and the state in quantum register
performance as memory.

Step 16 measure the output of the quantum probabilistic memory and store the
number of 1s in a classical variable nN for each architecture N . At the end of the
algorithm the simplest network N that minimizes the value of nN is indicated by
the algorithm.

Algorithm 1: Architecture selection

1 Divide the dataset T in κ folds

2 for each neural network architecture N do
3 Initialize all weights qubits with H |0〉
4 Create a superposition with the values 1 to κ in quantum register testFold

5 Initialize quantum register |performance〉 with the quantum register |0〉n
6 Train the neural networks in superposition with the folds with label

different of testFold
7 for each pattern pj and desired output dj in testFoldj do
8 Initialize the quantum registers input, calculatedOutput and

desiredOutput with the basis quantum state |pj , 0, dj〉
9 Calculate N |pk〉 to calculate network output in quantum register

calculatedOutput |o〉
10 if |o〉 = |d〉 and |testFold〉 = |inputFold(pj)〉 then
11 Set |performance〉j to 1

12 end

13 Calculate N−1 to restore |o〉
14 end

15 Apply the quantum associative recovering algorithm with input |1〉n,
memory |performance〉 and b qubits in the output

16 Measure quantum register |c〉 and stores the number of 1s in nN

17 end

18 Return the simplest neural network architecture N that minimize nN .

4. Experiments

Since there are no quantum computers with sufficient qubits to run the proposed
algorithm, it was necessary to perform some changes in the quantum algorithm in
order to simulate it on a classical computer. Therefore, we reduced (without loss
of generality) the number of neural network instances in the quantum parallelism.
Besides this change, we simply followed the algorithm description in order to make
a classical version of Algorithm 1.

33

9

Table 1. Datasets.

Dataset features classes examples description
cancer 9 2 699 diagnosis of breast cancer
gene 120 3 3175 detect intron/exon boundaries in nucleotide sequences

diabetes 8 2 768 diagnose diabetes of Pima indians
card 51 2 690 predict the approval of a credit card to a customer
glass 9 6 214 classify glass types
heart 35 2 920 predict heart disease
horse 58 3 364 predict the fate of a horse that has a colic

mushroom 125 2 8124 discriminate edible from poisonous mushrooms

To perform the experiments, we use the Multilayer Perceptron (MLP). The train-
ing and evaluation were performed using the scikit-learn30 version 0.19.1. After
training the neural networks we evaluated the performance of every neural network
instance and stored the performance vectors which have the size of the validation
set and the i-th position is set to 1 if the trained network correctly classifies the
i-th vector in the validation set and is set to 0 otherwise. The performance vectors
are used as the memory of the probabilistic quantum memory and the output of
the probabilistic quantum memory was calculated using Eq. (7).

The datasets used in this work were from the PROBEN1 repository, which con-
sists in a collection of problems for neural network learning in the realm of pattern
classification and function approximation.31 PROBEN1 contains 15 datasets from
real-world problems and from 12 different domains. We used 8 datasets to perform
the experiments: cancer, gene, diabetes, card, glass, heart, horse and mushroom.
The details about the datasets used can be seen in Table 1. The datasets were di-
vided into 10 folds and the train set contains 9 folds while the test set contains the
remaining fold. The number of output qubits in the probabilistic quantum memory
was set to 100.

We consider the number of neurons in the hidden layer as the architecture to be
evaluated. Thus, the number of neurons in the hidden layer was varied between 1
and 20. All neural network architectures were trained and tested for every dataset
and for 1000 different initialization weights (100 for each fold). The alpha param-
eter used avoids overfitting by constraining the size of the weights. The learning
algorithm is ‘adam’ which refers to the stochastic gradient-based optimizer pro-
posed by Kingma, Diederik, and Jimmy Ba.32 The parameters used can be seen in
Table 2.

5. Results and discussion

Let X be a random variable representing the number of 1s in the output of the
probabilistic quantum memory. Table 3 shows the results of the experiment for
cancer and gene datasets. We can verify that the expected value E(X) is related
to neural network mean performance. An increase in performance corresponds to
a reduction in E(X).

In Fig. 3 we plot the mean performance of each architecture versus the expected
value of the X for cancer, card, diabetes, gene, glass, heart, horse and mush-
room datasets. We can easily see that there is an approximately linear relation
between the neural network mean performance and E(X). In this way, we can

34

10

Table 2. MLP Parameters.

Parameter Value Description
solver adam stochastic gradient-based optimizer
alpha 1e-4 regularization term parameter
beta 1 0.9 decay rate for estimates of first moment vector
beta 2 0.999 decay rate for estimates of second moment vector
epsilon 1e-8 value for numerical stability in adam
max iter 100 maximum number of iterations
activation relu rectified linear unit function

learning rate init 1e-3 controls the step-size in updating the weights
number of hidden neurons [1,20] number of hidden neurons

use Algorithm 1 to select a near-optimal neural network and also to estimate the
mean-performance of the neural network architecture over a dataset.

One limitation of classical neural networks is the absence of an algorithm to de-
termine the best neural network architecture for a given dataset. Classical strate-
gies to evaluate neural network architectures requires a costly process that can last
from minutes to days.14 How to select a neural network architecture is yet an open
problem and the use of more complex neural networks with deep architectures in-
creases the complexity to determine a neural network architecture with optimal
performance.

In this work, we explore the principles of quantum computing to create a hybrid
classical and quantum algorithm to perform classical neural network architecture
selection. If C is the cost to train one neural network, given n neural networks
architectures the proposed method has cost O(n ·C) and determine a near-optimal
neural network architecture in the given set of architectures. A classical algorithm
to evaluate n neural networks architectures over all possible initial weights will have

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Neural network mean performance

E
(X

)

cancer

card
diabetes
gene

glass
heart
horse

mushroom

Figure 3. Cancer, card, diabetes, gene, glass, heart, horse and
mushroom datasets mean performance versus E(X)

35

11

Neurons Performance E(X)
1 0.5269 46.3695
2 0.7148 25.9858
3 0.8423 12.7966
4 0.8930 7.8277
5 0.9336 3.9903
6 0.9566 1.8340
7 0.9647 1.1213
8 0.9730 0.4200
9 0.9733 0.4945
10 0.9753 0.3059
11 0.9763 0.1581
12 0.9764 0.1571
13 0.9766 0.1543
14 0.9773 0.1461
15 0.9765 0.1543
16 0.9769 0.1510
17 0.9770 0.1488
18 0.9774 0.1426
19 0.9775 0.1423
20 0.9772 0.1449

(a) Cancer dataset

Neurons Performance E(X)
1 0.5778 38.3819
2 0.7862 13.2412
3 0.8619 5.1163
4 0.8781 3.7319
5 0.8809 3.5152
6 0.8829 3.3877
7 0.8827 3.3940
8 0.8814 3.4649
9 0.8808 3.4963
10 0.8796 3.5675
11 0.8790 3.6003
12 0.8787 3.6177
13 0.8777 3.6754
14 0.8777 3.6798
15 0.8781 3.6539
16 0.8768 3.7269
17 0.8775 3.6924
18 0.8772 3.7104
19 0.8772 3.7047
20 0.8769 3.7227

(b) Gene dataset

Table 3. Results cancer dataset (left) and gene datset (right)

at least cost O(n · 2|W | ·C), where W is the set of all possible weights with a given
precision. The proposed method has an exponential speed up when compared to
its classical version.

One limitation of the proposed method is its inability to evaluate neural networks
architectures with very close performance. This limitation occurs because of the
use of Hamming distance. Then the method should be used to select a set of near-
optimal neural networks and then a classical experimentation could be performed
to finish the search for the neural network with the best performance.

With a promise that the neural networks to be evaluated have a significant
difference in their accuracy over the test set, the proposed method will perform
an optimal selection (instead of near-optimal) with high probability. For instance,
with 1 neuron in the hidden layer we obtain a neural network mean accuracy of 0.52
and with 19 neurons in the hidden layer, the neural network obtains mean accuracy
of 0.97. With the 19 hidden neurons neural network the proposed method will have
0 or 1 ones in the output with probability 0.9874 and the neural network with 1
hidden neuron will have 0 or 1 ones in the output with probability 0.1548. With
the objective to illustrate the behavior of the proposed method, Fig. 4 presents the
number of ones in the output of the probabilistic memory and the probability of
each output.

36

12

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Number of 1s in the output

P
ro
b
a
b
il
it
y

1
19

Figure 4. Probability output for cancer dataset with 1 hidden
neuron and 19 hidden neurons

The neural network architecture selection uses quantum registers inputs, weights,
desired output, calculated output and performance. Algorithm 1 creates a superpo-
sition of neural networks with all possible weights and evaluate the performance of
each neural network in superposition. This evaluation in a quantum superposition
is based on a neural network quantum learning algorithm,17 one of the authors
generalizes this strategy to perform a selection182 and evaluation19 of neural net-
works architectures. We notice a related work where a quantum superposition of
classifiers is used to perform parameter selection.33

The main idea of the quantum cross-validation is to explore the quantum par-
allelism to execute a κ-fold cross-validation, training the model only once. This
strategy leads to a constant speedup in the cross-validation process. The exponen-
tial speedup obtained in this paper came from the superposition of neural networks.
In this way, using cross-validation we can evaluate an exponential number of neural
networks with the cost to train and run a single neural network.

6. Conclusion

In this work, we proposed a classical-quantum algorithm to select neural networks
architectures (number of neurons in the hidden layer). We evaluated the proposed
method using its classical description and reducing the number of artificial neural
networks in superposition.

Our main result is the ability to evaluate one neural network architecture through
a κ-fold cross-validation with the cost to train only one neural network instance.
The proposed method evaluates an exponential number of neural networks weights
simultaneously with an exponential improvement in computational cost when com-
pared with known classical alternatives. The fast neural network evaluation allows
the selection of near-optimal neural network architectures by repeating the cross-
validation for each neural network architecture.

2Where we supposed the viability of nonlinear quantum operators

37

13

Quantum computation can be used to evaluate neural networks models with
an exponential speedup. The lack of experimentation is one problem in quantum
machine learning because of the non-existence of quantum computers with enough
quantum bits. To allow experimentation, we use benchmark problems to evaluate
(without loss of generalization) a classical simplified version of the proposed method.

One possible future work is to extend the proposed method to deal with mod-
els with close performance. One suggestion to accomplish this improvement is to
change the probabilistic associative memory to deal with others distance functions.
We also can use other kinds of quantum memories and machine learning models.

Acknowledgement

This work was supported by the Serrapilheira Institute (grant number Serra-
1709-22626), CNPq and FACEPE (Brazilian research agencies).

References

[1] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[2] D. O. Hebb. The organization of behavior: A neuropsychological theory. Psychology Press,
2005.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323(9):533–536, 1986.

[4] S. Samarasinghe. Neural networks for applied sciences and engineering: from fundamentals
to complex pattern recognition. CRC Press, 2016.

[5] J. Xu, B. Xu, P. Wang, S. Zheng, G. Tian, and J. Zhao. Self-taught convolutional neural
networks for short text clustering. Neural Networks, 88:22–31, 2017.

[6] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2414–2423, 2016.

[7] W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pages 4960–4964. IEEE, 2016.

[8] V. K. Ojha, A. Abraham, and V. Snášel. Metaheuristic design of feedforward neural networks:
A review of two decades of research. Engineering Applications of Artificial Intelligence, 60:97–
116, 2017.

[9] A. Abraham. Meta learning evolutionary artificial neural networks. Neurocomputing, 56:1–38,
2004.

[10] J. Ilonen, J. Kamarainen, and J. Lampinen. Differential evolution training algorithm for
feed-forward neural networks. Neural Processing Letters, 17(1):93–105, 2003.

[11] D. J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms.
In Proc. 11th Int. Joint Conf. Artificial Intelligence, volume 89, pages 762–767, San Mateo,
CA, 1989. Morgan Kaufmann.

[12] D. Pham and D. Karaboga. Intelligent optimisation techniques: genetic algorithms, tabu
search, simulated annealing and neural networks. Springer, 2012.

[13] J. Zhang, J. Zhang, T. Lok, and M. R. Lyu. A hybrid particle swarm optimization–back-
propagation algorithm for feedforward neural network training. Applied mathematics and
computation, 185(2):1026–1037, 2007.

[14] P. G. Benardos and G. Vosniakos. Optimizing feedforward artificial neural network architec-
ture. Engineering Applications of Artificial Intelligence, 20(3):365–382, 2007.

[15] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In International Joint Conference on Artificial Intelligence, volume 14, pages

1137–1145. Stanford, CA, 1995.
[16] J. S. Judd. Neural network design and the complexity of learning. MIT press, 1990.
[17] M. Panella and G. Martinelli. Neural networks with quantum architecture and quantum

learning. International Journal of Circuit Theory and Applications, 39(1):61–77, 2011.

38

14

[18] A. J. da Silva, T. B. Ludermir, and W. R. de Oliveira. Quantum perceptron over a field and
neural network architecture selection in a quantum computer. Neural Networks, 76:55–64,
2016.

[19] A. J. da Silva and R. L. de Oliveira. Neural networks architecture evaluation in a quantum
computer. In 6th Brazilian Conference on Intelligent System, pages 163–168, Uberlândia,
MG, 2017. IEEE.

[20] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum
machine learning. Nature, 549(7671):195–202, 2017.

[21] M. Schuld, I. Sinayskiy, and F. Petruccione. The quest for a quantum neural network. Quan-
tum Information Processing, 13(11):2567–2586, 2014.

[22] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open quantum assembly
language. arXiv preprint arXiv:1707.03429, 2017.

[23] C. A. Trugenberger. Probabilistic quantum memories. Physical Review Letters, 87(6):067901,
2001.

[24] C. A. Trugenberger. Quantum pattern recognition. Quantum Information Processing,
1(6):471–493, 2002.

[25] T. Brun, H. Klauck, A. Nayak, M. Rötteler, and Ch. Zalka. Comment on “probabilistic
quantum memories”. Phys. Rev. Lett., 91:209801, 2003.

[26] M. Schuld, I. Sinayskiy, and F. Petruccione. Quantum computing for pattern classification.

In Pacific Rim International Conference on Artificial Intelligence, pages 208–220. Springer,
2014.

[27] T. Menneer and A. Narayanan. Quantum-inspired neural networks. Tech. Rep. R329, 1995.
[28] B. Ricks and D. Ventura. Training a quantum neural network. In Advances in neural infor-

mation processing systems, pages 1019–1026, 2004.
[29] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-

ume 1. MIT press Cambridge, 2016.
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and É. Duchesnayothers. Scikit-learn: Machine learning in python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[31] L. Prechelt. Proben1: A set of neural network benchmark problems and benchmarking rules.
1994.

[32] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[33] V. Dunjko, J. M. Taylor, and H. J. Briegel. Advances in quantum reinforcement learning.
In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
282–287, 2017.

39

404040

4
Third Contribution

Evaluation and improvement of a
Probabilistic Quantum Memory Weightless

classifier

Evaluation and improvement of a Probabilistic
Quantum Memory Weightless classifier

Priscila G. M. dos Santos, Rodrigo S. Sousa and Adenilton J. da Silva∗

Universidade Federal Rural de Pernambuco
Departamento de Computação.

Recife, Brazil

Abstract

In this work, we evaluate a Quantum Weightless Classifier based on a Proba-

bilistic Quantum Memory. We also propose a modified version of the model by

adding a scale parameter to the memory retrieval algorithm. The evaluation

of both models was conducted through classical experiments using an equiva-

lent classical description of the Probabilistic Quantum Memory algorithm. We

present the first evaluation of a quantum weightless neural network on public

benchmark datasets and propose a modification to better adjust the model in

pattern classification tasks. The original classifier presented satisfactory accu-

racy while its modified version obtained improved results in all datasets.

Keywords: quantum computing, quantum machine learning, probabilistic

quantum memory

1. Introduction

Quantum Computing is a paradigm that has been gathering increasingly

attention several decades now. The current advances in the field are bringing

us to a new era in quantum technology: the era of Noisy Intermediate-Scale

Quantum Computers (NISQ) [1]. The quest for quantum supremacy, which

∗Corresponding author
Email address: priscila.marques@ufrpe.br, rodrigo.silvasouza@ufrpe.br,

adenilton.silva@ufrpe.br (Priscila G. M. dos Santos, Rodrigo S. Sousa and Adenilton J.
da Silva)

Preprint submitted to an International Journal March 5, 2019

41

will be achieved when a quantum computer outperforms a classical one in a

given task, is currently a heated discussion topic in the field. Given the current

state of the art, it is expected that quantum supremacy can be achieved in the

next few years. [2]. One of the approaches for achieving it is through quantum

machine learning.

Machine learning is a widely applicable and relevant field. It focus on devel-

oping automated ways for computers to learn some specific task from a given

set of data samples. Quantum machine learning studies the use of quantum

concepts in order to build quantum enhanced machine learning models able to

outperform the classical ones [3]. Several works have been conducted in this

area. A quantum generalisation of a neural network is proposed in [4]. In [5] a

quantum model of a distance-based classifier is proposed and implemented in a

small-scale quantum computing device.

The aim of this work is to contribute with the field by investigating a quan-

tum machine learning application, proposing a classical experimentation set-up

to evaluate the model and proposing an improvement for it. This work is cen-

tered on a quantum weightless neural node classifier. We perform the first

experimental evaluation of the model and propose a modification that improves

its classification accuracy.

The weightless neural node evaluated in this work is a quantum model.

It would be required a large scale quantum device in order to experimentally

test the models classification capabilities. Quantum computing is currently

on the rise and quantum devices with increasing numbers of qubits are being

developed to supply this demand. However, the publicly accessible quantum

devices currently at disposal can only perform experiments which require a

small amount of qubits. High scale experiments cannot be conducted on such

small devices. Considering this, we take the classical approach. Since quantum

circuits can be calculated classically with a polynomial amount of memory, we

conducted the model evaluation on a conventional computer through classical

reduced versions of the models algorithms.

2

42

2. Quantum Computing

Quantum computing is a field that has been gathering increasingly attention

due to its current advances [1]. It touches upon ideas of quantum mechanics and

information theory. A quantum computer is the concept for a computational

device capable of representing information by making use of microscopic quan-

tum level effects to perform computational tasks [6]. In quantum computing,

the quantum bit (qubit) represents the basic unit of information in a quantum

system. Analogously to the behavior of a subatomic particle, the qubit can be

in more than one state at a given time. Equation (1) describes one qubit in

superposition, where α and β are the probabilistic amplitudes associated with

the states |0〉 and |1〉, respectively.

|ψ〉 = α|0〉 + β|1〉 (1)

The probabilistic amplitudes are represented by complex numbers, obeying

the normalization rule described in equation (2). The probability of a qubit

being found in any of the possible states is given by the modulus squared of its

amplitudes before a measurement is made.

|α|2 + |β|2 = 1 (2)

An important quantum characteristic is the necessity to measure in order

to extract information from a quantum state. After a measurement the system

collapses to one of its possible states in the superposition. For instance, given

the quantum state described in equation (3), the probability of finding |i〉 after

a measurement is pi = |αi|2.

|ψ〉 =
∑

i

αi|i〉 (3)

Due to the capacity of dealing with states in superposition and other in-

corporated quantum effects, quantum computers provide a different way of ap-

proaching computational tasks, which, could be used to solve problems that are

hard for conventional classical computers.

3

43

3. Probabilistic Quantum Memories

In this section, we present the quantum memory model used to build the

weightless network classifier. The Probabilistic Quantum Memory (PQM) [7, 8]

is a content-addressable quantum memory. It outputs the probability of a given

input pattern being stored on the memory by calculating the Hamming distance

between the input pattern and all the patterns stored on the memory. It is a

probabilistic model designed to recognize even incomplete or noisy information.

Despite being an associative model, the PQM possess a highly scalable storage

capability, being able to store all the possible 2n binary patterns of n bits. The

storage and retrieval PQM procedures are explained in the following subsections.

3.1. Storage Procedure

The PQM stores information in an uniform quantum superposition. The

quantum state after the storage mechanism execution is described in Eq. (4),

where p is the number of patterns in the dataset and pi are the stored patterns.

|M〉 =
1√
p

p∑

i=1

∣∣pi
〉

(4)

3.2. Retrieval Procedure

The retrieval procedure computes the Hamming distance between an input

and all the patterns superposed on the memory quantum state. It probabilisti-

cally indicates the chance of a given input pattern being on the memory based on

the results of its distance distribution to the stored patterns in superposition.

If the input pattern is very distant from the patterns stored on the memory,

one will obtain 1 as a result with a large probability. Otherwise, 0 would be

obtained. Since the memory state is prepared in a superposition, the retrieval

procedure can calculate the distances from input to all the patterns at once.

The PQM retrieval algorithm is described in Algorithm 1. It uses three

quantum registers: |i〉, |m〉 and |c〉. The size of the first two registers is given

by the patterns size and |c〉 is a single qubit register. Step 1 of the algorithm

4

44

loads the pattern to be retrieved into the first register. The second register |m〉,
is the memory, it contains all the patterns stored. And |c〉 is a control qubit

initialized with an uniform superposition of |0〉 and |1〉. The quantum state

after the first step of the algorithm can be seen in (5), where p is the number

of stored patterns

Algorithm 1: Probabilistic quantum memory retrieval algorithm

1 Load the input |p〉 in the quantum register |i〉
2 |ψ1〉 =

∏n
j=1XmjXORij ,mj |ψ0〉

3 |ψ2〉 =
∏n

i=1

(
CU−2

)
c,mi

∏n
j=1 Umj

|ψ1〉
4 |ψ3〉 = Hc

∏1
j=nXORij ,mj

Xmj
|ψ2〉

5 Measure qbit |c〉
6 if c == 0 then

7 Measure the memory to obtain the desired state.

8 end

|ψ0〉 =
1√
2p

n∑

k=1

∣∣i; pk; 0
〉
+

1√
2p

n∑

k=1

∣∣i; pk; 1
〉

(5)

On step 2, the memory register qubits are set to |1〉, if they are identical

on the input and memory registers; and set to |0〉, if they differ. That is, if a

pattern stored on the memory is equal to the input pattern, step 2 would set

its memory state to |1〉n, where n is the pattern size. In step 3 the operators U

and a controlled U in |c〉 are applied to the memory registers.

U =


 e(i

π
2k) 0

0 1




This step is responsible for computing the Hamming distance between the

input pattern and the patterns on the memory. It computes the number of

5

45

0s in the memory register (the qubits that differ between memory and input).

When |c〉 is |0〉, step 3 computes the amount of 0s on the memory state with

a positive sign and with a negative sign when |c〉 is |1〉. Step 4 simply reverts

the memory register to its original state by computing the inverse of Step 2.

After the state preparation, the control register is measured. An input pattern

similar to the stored patterns increases the probability of measuring |c〉 = 0 and

a input that is very distant to the stored patterns increases the probability of

measuring |c〉 = 1. The measurement probabilities can be seen in (6), where p

is the number of stored patterns and dH(i, pk) denotes the Hamming distance

between input and the k-th stored pattern.

P (|c〉 = |0〉) =

p∑

k=1

1

p
cos2(

π

2n
dH(i, pk))

P (|c〉 = |1〉) =

p∑

k=1

1

p
sin2(

π

2n
dH(i, pk))

(6)

4. Quantum Weightless Classifier

The Quantum Weightless Neural Network Classifier [9] (QWC) is composed

of Probabilistic Quantum Memories acting as the network neurons. The model

is devised by using an array of PQM instances capable of distance based classi-

fication. Each PQM instance, by itself, works as a single class classifier, being

responsible for the classification of one of the classes in the dataset. The model

does not demand any training in a sense that the neurons do not have to be it-

eratively adjusted to learn from the training patterns. The model classification

procedure and the necessary set-up are detailed bellow.

4.1. Set-up Procedure

Despite not demanding any training, the Quantum Weightless Classifier re-

quires an initial set-up procedure in order to perform classification tasks. For

a given dataset with n classes, the model is constructed with n PQMs acting

as neurons. The training samples must be divided and grouped by class. For

6

46

each group, a new PQM is created and used to store all the samples belonging

to that group, making in total n PQM instances, one for each class.

The set-up procedure consists in storing the training samples on their respec-

tive class PQM. The n PQMs together define a single classifier. The described

setup process can be seen in Alg. 2. Once all the training samples are correctly

stored, the model can perform the classification task by calling the PQM re-

trieval algorithm. Hence, the Quantum Weightless Classifier does not require

any previous training in order to classify for all the classes present in a dataset.

Algorithm 2: Probabilistic Quantum Memory Classifier Setup

1 Initialize a PQM Classifier

2 for each class in dataset do

3 Create a new PQM and assign the class label to it

4 Store the class training samples on the PQM

5 Add the PQM to the PQM Classifier

6 end

7 Return the PQM Classifier

4.2. Classification Procedure

Once the training samples are stored the model is ready to classify new

patterns. The classification procedure can be seen in Alg. 3. In order to classify

a new sample, the Quantum Weightless Classifier must present it to all the

PQM neurons which constitute the its network. Each PQM neuron performs

its retrieval algorithm using the presented sample as input. Since each PQM

hold the patterns of a specific class, each output will be the probability of the

sample having similar features to the patterns of that specific class. Therefore,

the PQM neuron which outputs the smallest expected value, E(X), is assumed

to be the one that correctly classifies the sample.

7

47

Algorithm 3: Probabilistic Quantum Memory Classifier Classification

1 for each PQM in PQM Classifier do

2 Run the PQM retrieval algorithm with input testPattern

3 Calculate the expected value E(X) from the retrieval algorithm

output

4 end

5 Return the label from the PQM Classifier with the smallest E(X)

5. Parametric Quantum Weightless Classifier

The PQM retrieval algorithm output is based on the calculated Hamming

distances between the input and the stored patterns. This distance metric is

not very reliable in every context as patterns too close to patterns from another

class would likely be misclassified. In order to improve the memory output

probabilities, we propose a modified version of the PQM.

A Parametric Probabilistic Quantum Memory (P-PQM) operates exactly in

the same way as the PQM but with the addition of a scale parameter in the

recover algorithm. This scale parameter is used when the Hamming distance

between the input pattern and the patterns stored on the memory is calculated.

That way, the amplitude of each vector can be adjusted according to the chosen

parameter.

The modified U operator is given bellow, in which param is the given scale

parameter and k is the number of patterns stored on the memory.

U =


 e(i

π
2×k×param) 0

0 1




The QWC model demonstrates how the PQM can be used to perform pat-

tern classification tasks. The proposed parametric version, P-PQM, allows the

necessary adjustments according to a given application. Hence, by adjusting

the scale parameter we can improve classification accuracy for each class in a

given dataset.

8

48

We propose a modified version of the quantum classifier, the Parametric

Quantum Weightless Classifier (P-QWC) model. It has the same basic construc-

tion as of the previously described QWC but is based on the P-PQM instead of

the PQM. In the next section we evaluate both models performances.

6. Model evaluation set-up

We presented in this section the experiments conducted without loss of gen-

erality on a conventional computer through classical reduced versions of Algo-

rithm 1. First, it is necessary to simulate the Probabilistic Quantum Memory

classically. To do so, we simply followed the description of its recover algorithm

as presented in Section 3.2. As for the storage mechanism, it is not needed

outside the quantum context and could be highly simplified by just storing the

patterns directly on the memory. Once obtained the PQM classical representa-

tion, the QWC can be evaluated by following the set-up and the classification

procedures described in Section 4. The same procedure applies to the P-QWC

model, with the only modification being the addition of a parameter to the

Hamming distance calculation step.

To perform the experiments we used categorical and numerical datasets from

the UCI Machine Learning Repository [10]. Details of the selected datasets can

be seen in Table 1. All datasets were preprocessed in order to binarize feature

values and deal with any missing values. The binarization process is required

in order to simplify the PQM usage. It was done by transforming each possible

value a feature could assume in its own separate feature in the sample vector.

Datasets containing real numerical values were not considered in order to further

simplify the process. Sample vectors containing missing feature values were not

removed from the datasets. All the missing feature values were replaced by

the value with highest occurrence for the corresponding feature in all the other

samples of the considered dataset.

Following the QWC set-up algorithm, we stored the training samples in

specific PQMs according to the classes they belong to. Then, we followed the

9

49

Dataset Classes Instances Attributes Missing Values

Balance scale 3 625 4 No

Breast cancer 2 286 9 Yes

Lymphography 4 148 18 No

Mushroom 2 8124 22 Yes

SPECT Heart 2 267 22 No

Tic-tac-toe 2 958 9 No

Voting records 2 435 16 Yes

Table 1: Datasets characteristics

QWC classification algorithm. The model classification accuracy was evaluated

by passing the patterns in the test set as input to each of the PQMs. The class

of the PQM which output the lowest expected value was set as the evaluated

pattern class. This procedure was done for each of the evaluated datasets. For

the P-QWC model, we optimize and select the parameters which achieve the

best test set accuracy for each P-PQM in the classifier. We tested 15 parameter

values in the range (0, 1] for each P-PQM.

7. Results

We verified that the P-QWC model performed better than the QWC over

all the datasets. The parameter influence on the heart dataset performance can

be seen in Fig. 1. For simplification purposes, the curve shows the performance

obtained by using the same parameter value for all P-PQMs constituting the

classifier. Considering the original PQM performance is equivalent to P-PQM

with parameter 1.0, a considerable increase in classification performance was

observed through parameter variation and even better performances are possible

by choosing different parameters for each P-PQM.

The results obtained with the experimental set-up described in Section 6 can

be seen in Table 2, where the accuracy of the QWC and P-QWC models can be

compared against the results obtained using the k-nearest neighbors algorithm

10

50

Figure 1: Parameter impact on Heart dataset

0.0 0.2 0.4 0.6 0.8 1.0
Parameter

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Pe
rfo

rm
an

ce

heart dataset

(KNN). The accuracy values shown are the average obtained from a 10-fold

cross-validation. The respective values for the standard deviation are included

between parentheses. We choose KNN as a baseline comparison because, as

well as our evaluated model, it is a non-generalizing learning model and does

not require training. The KNN model was set to use uniform weights for all

its points and the k nearest neighbors value was optimized and selected from

values between 1 and 50.

To perform an appropriate comparison of the models, a nonparametric sta-

tistical test was employed. We used the Wilcoxon paired signed-rank test [11]

with α = 0.05 to verify whether there exist significant differences between the

compared classifiers performances over the chosen datasets. Obtained results are

statistically equivalent in Balance scale, Breast cancer, SPECT Heart and Tic-

tac-toe datasets. KNN has better accuracy on Mushroom and Voting records

datasets. P-QWC performed better on Lymphography dataset. The significant

results are highlighted in the table.

11

51

The P-QWC has a performance equivalent to KNN in four out of the seven

tested datasets and outperforms it in one dataset. The main advantage of the

QWC is its memory requirements. While a RAM node memory grows expo-

nentially with input size, the QWC memory size grows linearly. This memory

advantage can allow the implementation of new weightless neural networks ar-

chitectures.

Dataset QWC P-QWC KNN

Balance scale 0.8111 (0.0666) 0.87 (0.2512) 0.8834 (0.0488)

Breast cancer 0.7309 (0.2639) 0.7380 (0.2604) 0.6970 (0.3797)

Lymphography 0.7829 (0.0815) 0.8442 (0.1118) 0.7695 (0.0931)

Mushroom 0.886 (0.0919) 0.929 (0.073) 1.0 (0.0)

SPECT Heart 0.4405 (0.2694) 0.8157 (0.1113) 0.7921 (0.181)

Tic-tac-toe 0.4542 (0.1199) 0.8309 (0.0678) 0.6714 (0.2989)

Voting records 0.892 (0.0575) 0.8966 (0.0545) 0.9332 (0.0377)

Table 2: 10-fold cross-validation average accuracy per dataset

8. Conclusion

In this work we evaluated a Quantum Weightless Classifier on public bench-

mark datasets through classical computation. We also proposed a modification

of the model by including a scale parameter to the PQM. The models are based

on probabilistic quantum memories capable of distance based classification. In

order to compare the performance of both models, we conducted experiments

through the direct simulation of the quantum memory retrieval algorithm.

Both quantum models achieved an average accuracy similar to the per-

formance obtained by the KNN algorithm in seven datasets. The proposed

parametric quantum model performed better than its unmodified version in all

datasets. The QWC model worst performance was in heart dataset with 37%

loss in accuracy compared to P-QWC and 35% to KNN. P-QWC best perfor-

mance shows an approximate accuracy gain of 7% over KNN in lymphography

12

52

dataset while its worst result was in voting records dataset, an approximate 3%

loss in accuracy compared to KNN.

The quantum model has shown satisfactory classification performance and

was further improved by the parametrization of the PQM. This work performed

the first empirical evaluation of a quantum weightless neural network and pro-

posed a modification able to achieve a considerable improvement in the classi-

fication capabilities of the model. As future works we want to verify the model

with different distance functions for the PQM and different architectures for the

classifier construction.

Acknowledgements

This work was supported by the Brazilian Research Agencies: Serrapilheira

Institute (grant number Serra-1709-22626), CNPq (grant number 420319/2016-

6) and FACEPE (grant number IBPG-1578-1.03/16).

References

[1] J. Preskill, Quantum computing in the nisq era and beyond, arXiv preprint

arXiv:1801.00862.

[2] A. W. Harrow, A. Montanaro, Quantum computational supremacy, Nature

549 (7671) (2017) 203.

[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd,

Quantum machine learning, Nature 549 (7671) (2017) 195.

[4] K. H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, M. Kim, Quantum

generalisation of feedforward neural networks, npj Quantum Information

3 (1) (2017) 36.

[5] M. Schuld, M. Fingerhuth, F. Petruccione, Implementing a distance-based

classifier with a quantum interference circuit, EPL (Europhysics Letters)

119 (6) (2017) 60002.

13

53

[6] M. A. Nielsen, I. Chuang, Quantum computation and quantum information

(2002).

[7] C. A. Trugenberger, Probabilistic quantum memories, Physical Review Let-

ters 87 (6) (2001) 067901.

[8] C. A. Trugenberger, Quantum pattern recognition, Quantum Information

Processing 1 (6) (2002) 471–493.

[9] A. Silva, W. de Oliveira, T. Ludermir, A weightless neural node based on

a probabilistic quantum memory, in: 2010 Eleventh Brazilian Symposium

on Neural Networks, IEEE, 2010, pp. 259–264.

[10] D. Dheeru, E. Karra Taniskidou, UCI machine learning repository (2017).

URL http://archive.ics.uci.edu/ml

[11] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine learning research 7 (Jan) (2006) 1–30.

14

54

	Introduction
	Motivation
	Objectives
	General
	Specific

	Outline
	Conclusion

	Referências
	First Contribution
	Second Contribution
	Third Contribution

